In silico prediction of Tumor Associated Antigens' immunogenicity

Filippo Castiglione

Consiglio Nazionale delle Ricerche

National Research Council of Italy, Italy

NEW TRENDS IN BIOMATHEMATICS Applications in Oncology and Immunology Over Over Yourdshop And a Magna - Engegneria "Tablo Potomenia" Universitä dagi Statik Meditarcana Vi & Devende 1: Regis Edates

modeling biological processes with ABMs



Agent-based Models (ABM) are mainly mechanistic models but may contain subprocesses described phenomenologically



1

## stochastic ABM of the immune response



Celada F, Seiden PE. A computer model of cellular interactions in the immune system. Immunology Today 1992; 13:56-62 Castiglione F, Celada F. Immune System Modeling and Simulation. CRC Press, Boca Raton, London, New York, 2015



## exploiting ML predictions



5



# Choice of the HLAs

and a second second

|                                                                  |                                                                                                                                                                                         |                                                                   |                                                                                                              | le*F                                                               | requenci                                                                                                                                                                                                                                                                                                                                       | ies 🤜                                                                            |                                                                                                                                          |                                                                    |                                                                                                    |                                                                                    |                                |        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--------|
|                                                                  |                                                                                                                                                                                         | HLA                                                               | > Allele Fr                                                                                                  | requency Se                                                        | arch > Classical                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                          |                                                                    |                                                                                                    |                                                                                    |                                |        |
|                                                                  | Please specify your search by selecting options from boses. Then, click "Search" to find HLA alivie frequencies that match your criteria. Remember at least one option must be selected |                                                                   |                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                          |                                                                    |                                                                                                    | aption must be select                                                              |                                |        |
| LA database<br>ww.allelefrequencies.net                          |                                                                                                                                                                                         | Lineux<br>Seinet<br>Seinet                                        | (All sec 1)<br>apartic all all<br>apartic pro-                                                               | ) Starting Allai<br>Inn (17 you we<br>rulations                    | e Ending<br>I to pick specific alleina, ma                                                                                                                                                                                                                                                                                                     | Aleke: [                                                                         | ) > (Type your all<br>within the Skert-D                                                                                                 | ele e.g. A*0<br>nd range at                                        | 1:01, etc. or tea                                                                                  | ove both empty t                                                                   | o reduke al ale                |        |
| Class I<br>HLA-A02:01<br>HLA-A03:01                              | 44%<br>17 <i>4</i> %                                                                                                                                                                    | Poyula<br>Ragic<br>Sampi<br>Popul<br>Disple                       | tion: (unte<br>n: (Al region<br>o Size: (1)<br>ation stand<br>ping 1 to 82 (5                                | al Anab Deimiter<br>1<br>1)(Al 1<br>Iandi Good<br>from 82) records | ee 1 (                                                                                                                                                                                                                                                                                                                                         | E) Cour<br>Type of Sku<br>Present T) Level of re<br>All     Second Course        | Harris (Al-countries<br>ady: (Al-Doutes<br>solution : (==========<br>Show frequencie<br>HEMET: (====================================     | 1 0 AH                                                             | Source of 4     Source of 4     Source of 4     Source of 4     Crick have for     Ornly positives | Clear<br>Massi: (Al Sov<br>Royalation, Higher<br>further details)<br>Only regative | tes 🔹 🗐<br>ef to Lowest Preque | sy 1   |
| IILA-AUSIUI                                                      | T1 • + 0                                                                                                                                                                                |                                                                   |                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                | The of Individuals                                                               | Allele                                                                                                                                   | Escula                                                             | THET /NI AL                                                                                        |                                                                                    | Manfeliated                    |        |
|                                                                  | 20 00                                                                                                                                                                                   | Line                                                              | Alleh                                                                                                        |                                                                    | Population                                                                                                                                                                                                                                                                                                                                     | that have the allele                                                             | Frequency<br>(in_decimate)                                                                                                               | Siza                                                               | Database                                                                                           | Distribution <sup>3</sup>                                                          | Association                    | Notes* |
| $\Pi \Box A = D D D U U U$                                       | 20.30                                                                                                                                                                                   |                                                                   |                                                                                                              | -                                                                  | and Arel Secondary over 2                                                                                                                                                                                                                                                                                                                      | 84.0                                                                             | 8.2520                                                                                                                                   | 372                                                                | tiee                                                                                               |                                                                                    | 10                             |        |
| HLA-DSS:01                                                       | 20.90                                                                                                                                                                                   | 1                                                                 | 94-101                                                                                                       | _                                                                  |                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                          |                                                                    |                                                                                                    |                                                                                    |                                |        |
| HLA-B51:01                                                       | 28.7%                                                                                                                                                                                   | 1                                                                 | A*11                                                                                                         | =                                                                  | Indiad Avail Ortanatas pop 3                                                                                                                                                                                                                                                                                                                   | 19.3                                                                             | 0.1000                                                                                                                                   | 373                                                                | See                                                                                                |                                                                                    | 0                              |        |
| HLA-B55:01<br>HLA-B51:01                                         | 2019%<br>28.7%                                                                                                                                                                          | 1 2 3                                                             | A*11<br>A*03                                                                                                 | E                                                                  | inited Areli Crosses page 3<br>Inited Areli Crosses page 3                                                                                                                                                                                                                                                                                     | 19.2<br>17.4                                                                     | 0.000.0<br>0.100.0                                                                                                                       | 373<br>373                                                         | See.                                                                                               | 3.3                                                                                | 8                              |        |
| HLA-B51:01                                                       | 28.7%                                                                                                                                                                                   | 1<br>2<br>3<br>4                                                  | A*11<br>A*03<br>A*50                                                                                         |                                                                    | inited Arali Cristman pag 3<br>Inited Arali Cristman pag 3<br>Inited Arali Cristman pag 3                                                                                                                                                                                                                                                      | 19.3<br>17.4<br>15.1                                                             | 0.0000<br>0.0010<br>11.0840<br>0.0740                                                                                                    | 373<br>373<br>373<br>373                                           | See<br>Dee<br>Dee                                                                                  | 111                                                                                | 8                              |        |
| HLA-B51:01                                                       | 28.7%                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>8                                        | A*11<br>A*03<br>A*88<br>A*88<br>A*01                                                                         | UUUUU                                                              | Initial And Emirates pay 3<br>Initial And Emirates pay 3<br>Initial And Emirates pay 3<br>Initial And Emirates pay 3<br>Initial And Emirates pay 3                                                                                                                                                                                             | 19.3<br>17.4<br>15.1<br>14.3<br>12.1                                             | 0.1030<br>0.2930<br>0.0740<br>0.0740                                                                                                     | 373<br>373<br>373<br>373<br>373<br>373                             | San<br>Ben<br>San<br>Ban<br>San                                                                    | 1111                                                                               |                                |        |
| HLA-B51:01<br>lass II                                            | 28.7%                                                                                                                                                                                   | 1<br>2<br>3<br>6<br>8<br>9<br>2                                   | A*11<br>A*03<br>A*88<br>A*26<br>A*01<br>A*33                                                                 |                                                                    | Initial Avail Diseasana page 2<br>Initial Arab Diseasana page 2                                                                                                                                            | 19.3<br>17.4<br>15.1<br>14.3<br>12.1<br>13.8                                     | 0.000<br>0.0010<br>0.0740<br>0.0740<br>0.0620<br>0.0620                                                                                  | 373<br>373<br>373<br>373<br>373<br>373<br>373                      | See<br>Dee<br>See<br>See<br>See                                                                    | 11111                                                                              |                                |        |
| HLA-B55:01<br>HLA-B51:01<br>lass II                              | 28.7%                                                                                                                                                                                   | 1<br>2<br>3<br>6<br>5<br>2<br>7<br>8                              | 4*10<br>4*11<br>4*03<br>4*60<br>4*28<br>4*01<br>4*31<br>4*29                                                 |                                                                    | Integel Avail Christiana pagi 2<br>Integel Avail Christofan pagi 2                                                                                                                                 | 19.3<br>17.4<br>15.1<br>14.3<br>12.1<br>11.8<br>10.3                             | 0.1030<br>0.0910<br>11.0840<br>0.0740<br>0.0620<br>11.0620<br>11.0620<br>11.0620                                                         | 373<br>373<br>373<br>373<br>373<br>373<br>373<br>373               | See<br>See<br>See<br>See<br>See                                                                    | 1111111                                                                            |                                |        |
| HLA-B51:01<br>HLA-B51:01<br>lass II<br>DRB1*03:01                | 28.7%                                                                                                                                                                                   | 1<br>2<br>3<br>4<br>5<br>8<br>7<br>7<br>8<br>9                    | A*10<br>A*11<br>A*03<br>A*58<br>A*01<br>A*31<br>A*28<br>A*01<br>A*30                                         |                                                                    | Integel Avail Charantan pag 3<br>Veltad Avail Charantan pag 3<br>Veltad Avail Charantee pag 3                                                                                  | 18.2<br>17.4<br>18.1<br>14.2<br>12.1<br>11.8<br>10.3<br>9.7                      | 0.1030<br>0.0910<br>0.0910<br>0.0740<br>0.0740<br>0.0740<br>0.07520<br>0.07520<br>0.05520                                                | 373<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373        | Sar<br>Sar<br>Sar<br>Sar<br>Sar<br>Sar                                                             | 11111111                                                                           |                                |        |
| HLA-B55:01<br>HLA-B51:01<br>lass II<br>DRB1*03:01                | 20.5%<br>28.7%<br>33.1%                                                                                                                                                                 | 1<br>2<br>4<br>6<br>8<br>7<br>8<br>8<br>9<br>9<br>10<br>10        | A*10<br>A*11<br>A*03<br>A*88<br>A*01<br>A*11<br>A*11<br>A*11<br>A*10<br>A*30<br>A*30<br>A*30<br>A*32<br>A*11 |                                                                    | ndesi Arab. Emenana pap 3<br>Indad Arab. Emeratas pap 3                                                                      | 18-2<br>17-4<br>18-1<br>14-2<br>12-1<br>11-8<br>10-2<br>9-7<br>7-5<br>6-2        | 0.1030<br>0.0918<br>0.0940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4340                                         | 373<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373 | See<br>Des<br>Des<br>Des<br>Des<br>Des<br>Des<br>Des<br>Des<br>Des                                 | 11111111111                                                                        |                                |        |
| HLA-B51:01<br>HLA-B51:01<br>Class II<br>DRB1*03:01<br>DRB1*16:01 | 20.3%<br>28.7%<br>33.1%<br>33.1%                                                                                                                                                        | 1<br>3<br>4<br>6<br>8<br>7<br>8<br>8<br>9<br>10<br>11<br>11<br>12 | 4*10<br>4*11<br>4*03<br>4*60<br>4*01<br>4*31<br>4*31<br>4*30<br>4*30<br>4*32<br>4*30<br>4*32<br>4*31         |                                                                    | Initial Avent Commune page 1<br>Initial Area Converting page 1 | 18.2<br>17.4<br>18.1<br>14.2<br>12.1<br>11.8<br>10.2<br>9.7<br>7.5<br>6.2<br>5.6 | 0.1059<br>0.2910<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940<br>0.4940 | 272<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273 | San<br>Dat<br>Dat<br>Dat<br>Dat<br>Dat<br>Dat<br>San<br>San<br>San<br>San                          | 1111111111111                                                                      |                                |        |

% of individuals carrying the allele





## **TCR-peptides affinity prediction**



M. Rasmussen, E. Fenoy, M. Harndahl, A. Bregnballe Kristensen, I. Kallehauge Nielsen, M. Nielsen, S. Buus. Pan-specific prediction of peptide-MHC-I complex stability; a correlate of T cell immunogenicity. J Immunol August 15, 2016, 197 (4) 1517-1524; doi:10.4049/jimmunol.1600582

Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res 2020 Apr 30. doi: 10.1021/acs.jproteome.9b00874.

### pMHC-TCR affinity calculation (and BCR-epitope)



Miyazawa-Jernigan TCR-MHCpep contact potential<sup>[4]</sup>

The work of Miyazawa and Jernigan on protein energy potentials provides a method for assessing the chance of direct interactions among proteins. The protein-protein potential concept was derived from the analysis of 3-dimensional structures in which the relative positions of amino acids were determined.

The contact potential matrix estimated by Miyazawa and Jernigan reflects the entropy between two residues. Low entropy means that the two residues have low energy and, therefore, that interaction between them is possible.

Miyazawa S, Jernigan RL (2000) Identifying sequence-structure pairs undetected by sequence alignments. Protein Eng 13: 459-475

# **Application 1**

Computational modeling of prostate cancer (active) immunotherapy

### KLK3

- The introduction of testing for prostate-specific antigen (PSA), a member of the fifteen-gene family of kallikrein-related peptidases and also known as kallikrein-related peptidase 3 (KLK3), in blood has revolutionized both the detection and management of prostate cancer.
- Initially identified in 1966, PSA (*KLK3*), a 33-kDa glycoprotein secreted by prostatic epithelial cells, was first characterized in 1971 by Hara et al. in forensic studies as a marker for human semen<sup>[\*]</sup>

<sup>&</sup>lt;sup>[1]</sup> M. Hara, Y. Koyanagi, T. Inoue, and T. Fukuyama, "Some physico-chemical characteristics of "gamma-seminoprotein", an antigenic component specific for human seminal plasma. Forensic immunological study of body fluids and secretion. VII," *Japanese Journal of Legal Medicine*, vol. 25, no. 4, pp. 322– 324, 1971 (Japanese).





## Prediction of T-cell peptides

### T-cell peptides in the study were predicted with the servers

□ NetMHCpan-4.1

https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1

□ NetMHCIIpan-3.2

https://services.healthtech.dtu.dk/services/NetMHCIIpan-3.2

## **T-cell peptides affinity prediction**



M. Rasmussen, E. Fenoy, M. Harndahl, A. Bregnballe Kristensen, I. Kallehauge Nielsen, M. Nielsen, S. Buus. Pan-specific prediction of peptide-MHC-I complex stability; a correlate of T cell immunogenicity. J Immunol August 15, 2016, 197 (4) 1517-1524; doi:10.4049/jimmunol.1600582

Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res 2020 Apr 30. doi: 10.1021/acs.jproteome.9b00874.

# Most prevalent HLAs in the UAE



• (3.5) (b)

Source: HLA database
(www.allelefrequencies.net)

#### class I

| HLA-A02:01 | 44%   |
|------------|-------|
| HLA-A03:01 | 17.4% |
| HLA-B35:01 | 20.9% |
| HLA-B51:01 | 28.7% |

#### class II

----

| DRB1*03:01 | 33.1% |
|------------|-------|
| DRB1*16:01 | 33.1% |

|                                                                          | Alleie Frequ                                                                                                                                                      | HINCY S             | earch > Classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                              |                                            |                           |          |               |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|----------|---------------|
|                                                                          | pecify your se                                                                                                                                                    | anch by I           | selecting options from books.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Then, click "Search" to f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd HLA alkie freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unities the                                                                                  | t match your c                                                                                               | tteria, Ramembe                            | ar at least one           | option m | ust be select |
| KUS!                                                                     | Alixo 1 St                                                                                                                                                        | uting Al            | sis: Ending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Allele:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ] > (Type your all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ie e.g. A*0                                                                                  | 1:01, etc. or is                                                                                             | eve both empty b                           | o include all alle        | depa)    |               |
|                                                                          | 771 - C C C C C C C C                                                                                                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              | 23251                                                                                                        | Clear                                      |                           |          |               |
| elect is                                                                 | eacific propulat                                                                                                                                                  | laris               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                              |                                            |                           |          |               |
| egion)<br>emple<br>epulat                                                | (Al regions<br>Size: ( = 1)                                                                                                                                       | ( 41                | Eltroic Origin: (<br>) Sample Year: (+ E)(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Type of Students</li> <li>Level of re</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dy: (All Duties<br>solution : (===================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (AI _ 1)                                                                                     | 1) Sort by:<br>(Click here for                                                                               | Population, itigrie<br>further details)    | et to Lowent Freque       | rsy 1)   |               |
| Naplayi                                                                  | g 1 10 82 (hors                                                                                                                                                   | t Gol<br>82) record | d enly Gold and Silver Q<br>N Pages 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | art I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Show frequencie<br>MEMED (#) [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41 <b>Q</b> AH                                                                               | Only positives                                                                                               | Grify regative                             | 15                        |          | eerth.        |
| Line                                                                     | y 1 to 82 (hors<br>Albele                                                                                                                                         | t Go<br>12) record  | Fopulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 911<br>The of individuals<br>that have the allele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Allele<br>Frequency<br>(in_decimata)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample<br>Size                                                                               | Only positives<br>IMGT/HLA1<br>Database                                                                      | Distribution <sup>3</sup>                  | Naplotype*<br>Association | Notes*   | ant ]         |
| Line                                                                     | y 1 to 82 (hors<br>Albele<br>A*10                                                                                                                                 | t Co<br>12) neorr   | Population UnRed Anal Encents pop 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9Ft<br>9Ft<br>9Fe of individuals<br>that have the allele<br>44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aliele<br>Frequency<br>(in_decimats)<br>8.2520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample<br>Size<br>372                                                                        | Dely positives<br>IMGT/HLA*<br>Database                                                                      | Ordy regative                              | Haplotype*<br>Association | Notes*   | earch         |
| Line<br>1                                                                | Allate<br>Allate<br>A*52<br>A+11                                                                                                                                  | 12) moor            | Population United Avel: Encades pop 3 United Avel: Encades pop 3 United Avel: Encades pop 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The of individuals that have the allele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aliele<br>Frequency<br>(in_decimate)<br>8.2520<br>0.1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample<br>Size<br>372<br>373                                                                 | Dely positives<br>IMGT/HLA <sup>1</sup><br>Database<br>See                                                   | Ordy regative<br>Distribution <sup>3</sup> | Haplotype*<br>Association | Notes*   | aent          |
| Line<br>1<br>2                                                           | Albele<br>A*52<br>A*53<br>A*03                                                                                                                                    | t Go<br>(2) neor    | 6 why Cobil and Silver (),<br>50 Pages 1<br>Population<br>United Anti Environments page 2<br>United Anti Environment 1<br>United Anti Environment 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ve of individuals<br>that have the allele<br>64.0<br>19.2<br>17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aliele<br>Frequency<br>(in_decimats)<br>8.2520<br>0.1030<br>0.0910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample<br>Size<br>373<br>373<br>373                                                          | City positives<br>IMGT/HLA <sup>1</sup><br>Database<br>See<br>See                                            | Distribution <sup>3</sup>                  | Naplotype*<br>Association | Notes*   | aerit         |
| Line<br>1<br>2<br>2                                                      | Albele<br>A+53<br>A+11<br>A+53<br>A+11<br>A+53<br>A+53                                                                                                            | t Go<br>t2) neon    | 6 why Cohl and Sever (),<br>8 Paper 1 Population United Avail Enverting pay 2 United Avail Enverting pay 3 United Avail Enverting pay | ve of individuals<br>that have the silete<br>44.0<br>19.2<br>17.4<br>16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aliele<br>Prequency<br>(in_decimats)<br>0.1030<br>0.0910<br>1.0840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample<br>Siza<br>372<br>373<br>373<br>372                                                   | City positives<br>IMGT/HLA <sup>1</sup><br>Database<br>See<br>See<br>See<br>See                              | Distribution <sup>3</sup>                  | Naplotype*<br>Association | Rotes*   | earch .       |
| Line<br>1<br>2<br>4<br>5                                                 | 9 1 10 82 (Nors<br>Albele<br>A*10<br>A*11<br>A*03<br>A*50<br>A*26                                                                                                 |                     | denty Gobt and Stree Q.     b     Population      United Avail Envertes por 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>91<br>The of individuals<br>that have the affete<br>64.0<br>19.2<br>17.4<br>15.1<br>14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aliele<br>Prequency<br>(in_decimate)<br>0.1030<br>0.0910<br>0.0910<br>0.0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Semple<br>Size<br>372<br>373<br>373<br>373<br>373                                            | Crey positives<br>IMGT/HLA <sup>1</sup><br>Database<br>See<br>See<br>See<br>See<br>See                       | Distribution <sup>3</sup>                  | Naplotype*<br>Association | Notes*   | eerit .       |
| Line<br>1<br>2<br>4<br>5<br>8                                            | 41 10.82 (Nors<br>Albele<br>A*52<br>A*53<br>A*53<br>A*53<br>A*51<br>A*51                                                                                          |                     | denty Gold and Stever Q     b     Population     United Anali Emerates pop 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>91<br>94<br>94<br>95<br>95<br>96<br>96<br>97<br>96<br>97<br>96<br>97<br>96<br>97<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shew frequencie<br>Mileie<br>Prequency<br>(in_decimate)<br>0.0010<br>0.0010<br>0.0010<br>0.0210<br>0.0240<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semple<br>Siza<br>372<br>373<br>373<br>373<br>373<br>373<br>373                              | INGT/HLA*<br>Database<br>Dec<br>Dec<br>Dec<br>Dec<br>Dec<br>Dec                                              | Distribution <sup>3</sup>                  | Haplotype*<br>Association | Notes*   |               |
| Line<br>1<br>2<br>4<br>5<br>5<br>5<br>5<br>7                             | 41 to 82 (from<br>Allele<br>A*10<br>A*10<br>A*11<br>A*03<br>A*11<br>A*03<br>A*11<br>A*25<br>A*01<br>A*31                                                          |                     | denty Cohl and Share O     h     Population     Population     United Avail Enerates pro: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V of individuals that have the allele<br>44.0<br>19.2<br>17.4<br>16.1<br>14.2<br>12.1<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Show frequencie<br>Alleie<br>Prequency<br>(in_decimats)<br>0.1030<br>0.0910<br>0.0910<br>0.0910<br>0.0940<br>0.0940<br>0.0530<br>0.0530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample<br>Siza<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373                       | Crey positives<br>IMGT/HLA*<br>Detabase<br>Det<br>See<br>See<br>See<br>See<br>See<br>See                     | Distribution <sup>2</sup>                  | Haplotype*<br>Association | Rotes*   | art ]         |
| Line<br>1<br>2<br>4<br>5<br>5<br>8<br>2<br>8                             | 9 1 to 82 (hors<br>Allade<br>A*10<br>A*10<br>A*10<br>A*10<br>A*10<br>A*10<br>A*10<br>A*10                                                                         |                     | Only and Share Q     Only and Share Q     Only and Share Q     Population     United And Envertes per 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e of 1<br>we of individuals<br>that have the allele<br>46.0<br>19.2<br>17.4<br>18.1<br>14.2<br>13.1<br>14.2<br>13.1<br>10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allele<br>Prequency<br>(in_5ecimats)<br>0.2010<br>0.0010<br>0.0010<br>0.0010<br>0.0010<br>0.0020<br>0.0020<br>0.0020<br>0.0020<br>0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample<br>Siza<br>372<br>373<br>372<br>373<br>373<br>373<br>373<br>373<br>373<br>373         | IMGT/HLA <sup>1</sup><br>Database<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>S        | Distribution <sup>2</sup>                  | Naplotype*<br>Association | Notes*   | art.          |
| Line<br>1<br>2<br>4<br>5<br>5<br>5<br>5<br>6<br>7<br>8<br>9              | 91 to 82 (how<br>Allele<br>A*102<br>A*103<br>A*103<br>A*103<br>A*26<br>A*26<br>A*26<br>A*21<br>A*20<br>A*30                                                       |                     | denty Cohl and Share Co<br>h     Population     Population     United Anti Encades peo 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Allele<br>Frequency<br>(in_decimate)<br>8 2520<br>0.0050<br>0.0740<br>0.0740<br>0.0740<br>0.0740<br>0.0740<br>0.0740<br>0.0740<br>0.0740<br>0.0740<br>0.0740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Semple<br>Size<br>372<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373         | Driv positives<br>IMGT/NLA <sup>1</sup><br>Database<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See  | Distribution <sup>3</sup>                  | Haplotype*<br>Association | Notes*   | art.          |
| Line<br>1<br>2<br>3<br>4<br>5<br>5<br>5<br>7<br>8<br>9<br>10             | 9 1 to 82 (hors<br>Albein<br>A*10<br>A*10<br>A*10<br>A*20<br>A*20<br>A*21<br>A*24<br>A*20<br>A*24<br>A*20<br>A*20<br>A*20<br>A*20<br>A*20<br>A*20<br>A*20<br>A*20 |                     | denty Gold and Share Gold     So Paper 1      Population  United And Enventses page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 4 4<br>37 4<br>36 of Individuals to<br>46.0<br>16.2<br>17.4<br>16.1<br>14.2<br>13.1<br>14.2<br>13.1<br>14.2<br>15.1<br>14.7<br>15.7<br>15.9<br>15.7<br>15.9<br>15.7<br>15.9<br>15.7<br>15.9<br>15.7<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>1 | Allele<br>Frequency<br>(in_decimate)<br>1.2570<br>0.1030<br>0.0700<br>1.0840<br>0.0740<br>0.0620<br>1.0610<br>1.0520<br>0.0530<br>0.0530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Semple<br>Size<br>372<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373         | Driv pasitives<br>IMGT/HLA*<br>Database<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>S  | Distribution <sup>3</sup>                  | Haptotype*<br>Association | Notes*   | nen           |
| Line<br>1<br>2<br>3<br>4<br>5<br>5<br>5<br>5<br>8<br>9<br>10<br>10<br>11 | 9 1 to 82 (hors<br>Allele<br>A*10<br>A*10<br>A*10<br>A*10<br>A*20<br>A*20<br>A*21<br>A*20<br>A*20<br>A*20<br>A*23<br>A*23                                         |                     | denty - Gold and Sheep O -<br>b Population     Data Anali Eventus per 3     United Anali Eventus per 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e of individuals<br>that have the atlete<br>64.0<br>10.2<br>17.4<br>16.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>12.1<br>14.2<br>15.1<br>14.2<br>15.1<br>14.2<br>15.1<br>14.2<br>15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15     | Allele<br>Frequency<br>(in_decimata)<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample<br>Size<br>Size<br>372<br>372<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373 | Driv positives<br>INGT/HLA's<br>Database<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>See<br>S | Distribution*                              | Hepiotype*<br>Association | Notes*   |               |
| Line<br>1<br>2<br>4<br>5<br>5<br>5<br>5<br>10<br>11<br>11<br>12          | 9 1 30 82 (hors<br>Altele<br>A*10<br>A*11<br>A*13<br>A*13<br>A*13<br>A*13<br>A*13<br>A*13<br>A*13                                                                 |                     | down - Sould and Share O -<br>b Paper - 1     Paperater     Pape          | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Allele<br>Allele<br>Frequesty<br>(In, Secimal)<br>8,2520<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0010<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,0000<br>0,000000 | Sample<br>Siza<br>Siza<br>372<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373<br>373 | Drive positives<br>Database<br>Database<br>Data<br>Data<br>Data<br>Data<br>Data<br>Data<br>Data<br>Dat       | Distribution <sup>3</sup>                  | Association               | Notes*   |               |

% of individuals that have the allele

### HLA-I peptides (CTL peptides)

| AOZOI<br>Number of strong binders<br>Number of weak binders 6    | MVP_001039.1 prostate-specific antigen isotorm i preproprotein inomo sapiens)<br>MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVCGQVLVHPQWVLTAAHCIRNK<br>SVILLGRHSLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMD<br>LPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTCS<br>GDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYRKWIKDTIVANP  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0301<br>Number of strong binders :<br>Number of weak binders 10 | >NP_001639.1 prostate-specific antigen isoform 1 preproprotein [Homo sapiens]<br>MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNK<br>3SVILLGRHSLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMD<br>LPTQEPALGTTCYASGWGSIEPEEFLTPKKLOCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTCS<br>GDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYRKWIKDTIVANP |
| B3501<br>Number of strong binders 8                              | >NP_001639.1 prostate-specific antigen isoform 1 preproprotein [Homo sapiens]<br>MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHS0PW0VLVASRGRAVCGGVLVHP0WVLTAAHCIRNK<br>SVILLGRHSLFHPEDTG0VF0VSHSFFHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMD<br>LPT0EPALGTTCYASGWGSIEPEELTPKKL0CVDLHVISNDVCAQVHP0KVTKFMLCAGRWTGGKSTCS<br>GDSGGPLVCNGVL0GITSWGSEPCALPERFSLYTKVVHYRKWIKDTIVANP   |
| B5101<br>Number of strong binders<br>Number of weak binders 13   | >NP_001639.1 prostate-specific antigen isoform 1 preproprotein [Homo sapiens]<br>MWVPVVFLTLSVTWIGAPLILSRIVGGWECEKHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNK<br>SVILLGRHSLFHPEDTGQVFQVSHSFFHPLYDMSLLKNRELRPGDDSSHDLMLLRLSEPAELTDAVKVMD<br>LPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTCS<br>GDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYRKWIKDTIVANP   |

### HLA-II peptides (HTL peptides)

| DRB1_0301                   | >NP_001639.1 prost <u>ate-specif</u> ic antigen isoform 1 preproprot <u>ein [Homo sapie</u> ns] |
|-----------------------------|-------------------------------------------------------------------------------------------------|
| Number of strong binders: 3 | MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSOPWOVI VASRGRAVCGGVLVHPOWVLTAAHCIRNK                         |
| Number of weak binders. 21  |                                                                                                 |
|                             |                                                                                                 |
|                             | GDSGGPLVCNGVLQGITSWGSEPCALPERPS <mark>LYTKVVHYKKWIKDTIVAN</mark> P                              |

DRB1\_1601

Number of strong binders: 8 Number of weak binders: 18 >NP\_001639.1 prostate-specific antigen\_isoform\_1 preproprotein [Homo sapiens] MWVP/VFLTL\$VTWIGAAPL1LSRIVGGWECEKHSOPWOV\_VASRGRAVCGGVLVHPOWVLTAAHCIRNK SVILLGRH\$LFHPEDTGQVFQVSHSFPHPLYPMSLLKWFFLRPGDD\$\$HDLMLLRL\$EPAELTDAVKVMD LPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTCS GDSGGPLVCNGVLQGITSWGSEPCALPERP\$LYTKVVHYFKWIKDTIVANP

## Multi-epitope subunit vaccine





# events / rules

- Injection: A dose V(0) = V is injected into the simulated volume representing 10 microliters discretised in  $L \times L \times L = 10 \times 5 \times 5 = 250$  lattice points
- tosis: B cells phagocyte, internalise, process and present viral peptides on class II HLA

- NK response: Natural killer cells (NKs) release IFNg upon bystander stimulation by danger M response: Macrophages (M) respond to danger (e.g., DAMPs) via TLR4 releasing TNFa and
- IL-6 M activation: macrophages become activated by IFNg (activated M have a greater
- phagocytic activity). This is modeled as a Bernoulli event with parameter  $p = c \times e^{i/E}$ where c = 0.9, I is local concentration of IFNg (i.e., in lattice site x) and I is a parameter representing the efficiency of interferon in activating M
- - M phagocytosis: M internalise, process and present viral peptides on class II HLA; in presence of IFNg they release IL-12; they also release TNFa
- DC activation: M release TNFa which activate dendritic cells (DC)
- sytosis: DC phagocyte, internalise, process and present viral peptides on class II HLA (exocytic pathway) but also on class I HLA (endocytic pathway)
- Th activation: in presence of danger signal, resting T helper lymphocytes are activated by interaction with peptide- bound HLAs on professional antigen presenting cells (M and DC, mainly DC) surface by means of specific interaction with their T-cell receptors (TCR); if no danger is present, the Th cells becomes anergic upon interaction of its TCR with the HLA-pepide complex
  - tion by APCs: activated Th interacting with antigen presenting cells (M, DC) Th sti Th duplication: start clone expansion; 50% of the daughter cells become memory cells Th cells release IL-2

    - M release IL-6
    - Th1 release IFNg
    - Th2 release IL-4
    - release IL-12 in presence of high local concentration of IFNg
    - Treg release TGFb and IL-10

- Th stimulation by APCs: activated Th interacting with antigen presenting cells (M, DC)
  - Th duplication: start clone expansion; 50% of the daughter cells become memory
  - Th cells release IL-2
  - M release IL-6
  - Th1 release IFNg
  - Th2 release IL-4
  - Th release IL-12 in presence of high local concentration of IFNg
  - Treg release TGFb and IL-10
  - ation by B: activated Th interacting with B cells

  - B duplication: stimulate B cells to clone expansion; 50% of the daughter cells become memory
     Th duplication: start clone expansion; 50% of the daughter cells become memory
    - Th release IL-2, IL-12 Th1 release IFNg

  - Th2 release IL-4 Treg release TGFb and IL-10

tion: depending on the local concentration of IFNg, IL-10, IL-4, IL-6, IFNb, IL-12,

- IL-18, IL-2, TGFb and IL23, active T helper cells undergo class switch into Th1 and Th2 B cells differentiate to antibody-secreting plasma B cells (PLB). 50% of
- duplicating B cells become PLBs. If the B lymphocyte is a memory cells then it generates 80% of PLBs
- Isotype switch: B cells perform immunoglobulin class switching, that is, change production of immunoglobulin from the isotype IgM to the isotype IgG. This is modeled as a Bernoulli event with parameter p depending on the local concentration of IL-2
- Antibodies production: Plasma cells secrete antibodies at a rate of about 2 ng/dayg Humoral response: antibodies inhibit viral particles by opsonization; the result are the immuno-complexes that are eventually cleared by macrophages
- Tc activation: in presence of IL-2, resting cytotoxic T cells (Tc) are activated by the interaction of their TCR with DC presenting on class I HLA the viral peptides but only in presence of IL-2
- Tc duplication: activated Tc interact with cancer cells presenting viral peptides on class I HLA molecule
- Tc start duplication. 50% of the daughter cells become memory cells 18. Cytotoxic response: activated Tc kill infected CC (this will further release danger signal)

# Tested protocols













## Dose escalation experiment

# Application 2

identification of viral antigens sharing sequence and structural homology with tumor-associated antigens

### in-silico prediction of TAA immunogenicity (active immunotherapy)

Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs)

**Methods** We looked for homology between published TAAs and non-self-*viral-derived* epitopes.

**Results** Several homologies (structural similarities) have been found between paired TAAs and viral peptides. These show eliciting cross-reacting CD8<sup>+</sup> T cell responses which possibly drive the fate of cancer development and progression.

**Conclusions** An established antiviral T cell memory may turn out to be an anticancer T cell memory, able to control the growth of a cancer developed during the lifetime if the expressed TAA is similar to the viral epitope.





|                                 | C.                                      |           |          |                                |            |                                   |                        |               | Welcome to the Cancer Antigenic Peptide Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|-----------------------------------------|-----------|----------|--------------------------------|------------|-----------------------------------|------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                         |           |          | iii capetilicp uni ac be       |            | 76 C                              | @ 1                    |               | HAAS THE BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 | F1 - D ADCB - D Outarthiele M           | Cestutte  | - 00VD - | 🖂 Hebbies - 💿 Dispession tival | @ router 4 | B HIEE TV Sortuf M D Cowndetoctor | ER Egypboard Sattemana | 20            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                                         |           |          |                                |            |                                   | a <b>a</b> 0 m         | B de Dorr     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cancer Antiperic Popt           | lide Database                           |           |          |                                |            | Data                              | base Search Help About | ■ INISTITUTE  | PROTEADONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                         |           |          |                                |            |                                   |                        |               | An and An and An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Autation Turner specific        | Differentiation Overexpressed           | Peterrila |          |                                |            |                                   |                        |               | IROTEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | A CONTRACT OF A CONTRACT OF A           |           | 1.)      |                                |            | The second second second          |                        | 1 . Mail: 10  | State With Develop 4 versional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| stona-action-4 lung care        | dama                                    | 42        | 44       | TIASHGARLY                     | 118-117    | sutsiogaus numor cella            | Echtralic 2011 =       |               | Browse the database Search/Wilter the database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| APISI Colorect                  | tal cancer                              | A24       | 20       | ATLDUAT                        | 79-87      | pep#0e                            | Shirkawa, 2021 u       |               | and the second sec |
| ARTO1 (Talleton                 |                                         | DRS       | 10       | TSVYFNLPADTIVTN                |            | autologicus tumor cellis          | Warg, 2000 u           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B-PAT melenar                   | ta .                                    | 064       | 24       | EDUTYROSOFGLATERSEMISGSHOFEOLS | 035-614    | pepide                            | Sharkers, 2004 III     | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ICR-AllL fusion protein cryster | TyMUE MARTIN                            |           | 14       | SPROSPERI                      | 922-818    | pecility                          | 303108, 3224 //        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| b3a2)                           |                                         | DR4       | 26       | ATGENOSSICALORPINS             | 820-938    | pepida                            | Boach, 1998            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                                         |           | . 44     | SSKALORPY                      | 820-924    | perfat                            | Nutrida, 1928 - 3      |               | Old you find an article that is not present in the database? Flause let us know.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                 |                                         | DRB       |          | ATOFKQ658KALGHPIWS             | 820-838    | uestae                            | Makita 3002 -          |               | Feel free to share this website on those networks!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ieta catinta melanan            | ía -                                    | 624       | 20       | 311,0300-#                     | 29-37      | autologous tumor parts            | Building, 1996 11      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| camp-6 outcomets                | a, gattric, and endersettiat continents | AJ        | 43       | Rumantin                       | 47-75      | 242539                            | Servende, 2014 . 0     | (a)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tabe-e head and                 | d seck causerous self-carcinisms        | 835       | 10       | PROVINCE                       | 476-484    | autologous tumor palle            | Mendrarysts, 1947 in   | 5445          | ♥ INSTITUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dis27 (selanar                  |                                         | 0118      | 24       | ADWWD.DPKIA                    | 285-771    | autologicus lumor cellis          | Marg. 1999             | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                                         | 671       | 19       | ELGRIFTE                       | 926-933    | Buttleddaus butter cellts         | Roddine, 2012. m       | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 | tu .                                    | 44        | 40       | ACOPHEOH/V                     | 23-32      | autologous surice pells           | Wolfer, 1996 -         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COKNER (MELANON                 | ta                                      | ATI       |          | ANDPWTWLR                      | 125-133    | autologoue tumor selle            | Huter, 2004            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                                         |           |          |                                | 1011MP     |                                   |                        | PRODUCTION OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| to to be of os entries          |                                         |           |          |                                |            |                                   |                        | Preven Teldie |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                                         |           |          |                                |            |                                   |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### **Tumor Associated Antigen**

- CLPP
- Gp100
- HSPH1
- HEPACAM
- CD274
- MUC1
- KIF20A
- Tyrosinase
- CEA
- Telomerase
- Secernin1

#### Viral protein

- E1 HPV
- UL20 HCMV
- large tegument protein HSV-2
- polyprotein encephalomyelitis virus
- ENV HIV
- ORF46 HHV8
- Env HIV
- Gag HIV and Env HERV
- Env HIV
- Env HIV
- PolB1 influenza

Viral nanomer peptides for the four most prevalent MHC class I alleles where chosen by homology search (BLAST) and selected by NetMHCstapan v.1.0

versus

| ~ |  |
|---|--|
| _ |  |
|   |  |
|   |  |



#### Homologies between TAAs and viral peptides

Structural predicted conformation of the paired viral and tumor-associated antigen peptides bound to the HLA-A\*02:01.

Blue areas = contact points with HLA molecule; Red areas=contact points with the TCR  $\alpha$  chain; Green areas=contact points with the TCR  $\beta$  chain.



© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ

Strong binding peptides Weak binding peptides Threshold for HLA-A\*02:01 Aff(nM) %Rank\_aff Com HLA Identity Pred Thaif(h) %Rank\_S 1-log50k peptide CLPP ILDEVLVHL HLA-A\*02:01 ILDKVLVHL CLPP 0.899 6.54 0.40 0.703 24.98 1.00 0.742 0.77 W8 8 CIPPY TLDCVLVHI. 0.80 HLA-A\*02:01 ILDCVLVH CLPPN 0.879 5.36 0.60 0.757 13.90 0.781 0,75 WB CEA INIGVLVGV CEA 0.977 29.43 0.851 5.02 0.15 0.876 0,05 SB HLA-A\*02:01 IMIGVLVGV 0.01 9 CEAV IIIGALVGV HLA-A\*02-01 IIIGALVGV CEAV 0.927 9.10 0.20 0.755 14.23 0.80 0.789 0.5 WA gp100 CRUMEN 0.812 7.67 0.829 0,32 58 02:01 MLGTHTME 0.30 gp1 10 MLGTHAMLY 80100N HLA-A\*02:01 MLGTHAMLV gp100V 0.794 3.00 1.20 0.747 15.38 0.80 0.756 0,86 WB tyr MLLAVLYCL HLA-A\*02:01 MLLAVLYOL 0.945 12.30 0.12 0.840 5 62 0.16 Tumor cell inoculation No treatment (notreatment) control Random peptide (wrongpep) control Vaccine (variant) Wild type vaccination (wt) control D7 D10 D13 D16 D19 01 SLAEDDVV KIF20A' 0.686 1.84 2.50 0.672 0.675 HLA-A\*02:01 KMDAEHPEL 0.617 0.643 47.73 1.50 1,73 Secerni: 0.512 1.03 4.50 SECV1 18 MDAEHPGL HLA-A\*02:01 RMDAEHPGL SECV1 0.492 0.98 4.50 0.532 158.63 3.00 0.524 SECV2 KMDEEHPGL HLA-A\*02:01 KMDEEHPGL 1,18 SECV2 0.555 1.18 4.00 0.701 25.45 1.00 0.672 HLA-A\*03:01 LASFKSFLK HLA-A\*03:01 LASFKSFLK RG55 RG55 0.177 0.40 3.50 0.542 142.57 0.80 0.469 0.95 19 HLA-A\*03:01 LAAFKSFLK RGS5V RGS5V 0.220 0.46 3.00 0.563 113.17



Prediction of cross-reactive antitumor T cell response





### **CD8 (virtual) ablation experiment**

## Conclusions

- Computer simulations and immuno-informatics prediction tools enable in-silico trials
- They provide comprehensive control over the configuration of virtual experiments and in-depth analysis of the outcomes. For example, this includes
  - selecting the haplotype
  - determining the vaccine's subunits
  - assessing the impacts of modifying the injection schedule
  - conducting dose-escalation studies
- While they represent an approximation of reality, they can serve as a valuable tool in the clinical optimization of immunotherapies

Thank you for listening

\*\*Copyright Disclaimer\*\*

© [2024] [Filippo Castiglione/Consiglio Nazionale delle Ricerche] All rights reserved.

This content is protected by copyright law. Unauthorized reproduction, distribution, or use of this content, in whole or in part, is strictly prohibited without prior written permission from the author. For permissions or inquiries, please contact Filippo Castiglione.