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OUTLINE

- Model-based versus Data-based learning in biomedicine

- Model and data fusion and physics-driven learning

- multi-scale modeling of glioblastoma in precision oncology



Model-driven learning in biomedicine: an example
Theory-driven learning in biomedical research has the potential to unveiling the CAUSALITY
that governs the biological processes. The most successful example is the Hodgkin-Huxley
model for cell excitability
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Figure 6. Modelling the action potential

Figure 1. The cover of the 1963 Nobel Prize Programme



The era of big data and the advent of precision medicine

Stratified Medicine Precision Medicine
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Data-driven learning in biomedicine
Data-driven learning has the objective to infer correlations among big data, that result from
different modalities and different level of fidelity. Machine learning is a subfield of Al which
uses algorithms to automatically learn insights and recognize patterns from data, applying
that learning to make increasingly better decisions
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Supervised vs unsupervised learning

Frequently used algorithms
for biomedical research

Example usage (data type)
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reduction

® Cancer vs healthy classification
(gene expression)

® Multiclass tissue classification
(gene expression)

® Genome-wide association
analysis (SNP)

® Pathway-based classification
(gene expression, SNP)

® Protein secondary structure
prediction (@amino acid sequence)

® Sequence similarity prediction
(nucleotide sequence)

® Protein family clustering
(@amino acid sequence)

® (Clustering genes by chromosomes
(gene expression)

® (Classification of outliers (gene
expression)

® Data visualization (single cell
RNA-sequencing)

® Clustering gene expression
profiles (gene expression)
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Integration of ML and multiscale modelling
ML learning alone infers correlations without imposing any law of physics. Multiscale
simulations indeed seek to infer the behavior of the system, if we have access to massive

amounts of data, while the governing equations/parameters are not precisely known.
Their integration is crucial to build physics-driven knowledge of the biological processes.
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Integration of ML and multiscale modelling: a workflow
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Cells feel their environment through physical forces

Soft matrix Stiff matrix

static

dynamic

Cytoskeleton

Lower cell

Fig. 2. Substrate stiffness influences adhesion structures and dy-
namics (74), cytoskeleton assembly and cell spreading (77, 42), and
differentiation processes such as striation of myotubes (28). (Top) The
arrows point to dynamic adhesions on soft gels and static, focal
adhesions on stiff gels. [Adapted from (74)] (Middle) The actin cyto-
skeleton. (Bottom) A cell-on-cell layering in which the lower layer is
attached first to glass so that the upper layer, which fuses from
myoblasts that are added later, perceives a soft, cellular substrate.

[Discher et al., 2005, Science]
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Fig. 2. The pattern of proliferation corresponds to predicted local mechan-
ical stresses. (A) FEM mesh of contracting monolayer. (B) FEM calculations of
relative maximum principal tractional stress exerted by cells in a small square
island. (C-E) Cells cultured on annulus. Shown are phase contrast (C), FEM
results (D), and colorimetric stacked image of cell proliferation (E). (F-H) Cells
cultured on asymmetric annulus. Shown are phase contrast (F), FEM results (@),
and colorimetric stacked image of cell proliferation (H). Outer diameter is
346 m; inner diameter is 200 um; center of asymmetric hole is 30 um from
the center of the island. Statistical analysis is presented in Fig. 5. (Scale bars,
100 um.)

[Nelson et al., 2005, PNAS]



Mechano-biology of tumour cells in-vitro

Understanding how mechanical and physical cues influence the invasive strategies of a
malignant tissue is crucial for curing many cancers. Numerous in-vitro system models have
been proposed to capture the complex features of cancer cells (e.g. migration,
proliferation, aggregation and resistance to therapies) , but also the dynamic and evolving
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Figure 3. Tumor progression is associated with continuous alterations in tissue and cell
mechanics

[Weaver at al 2007, Friedl et al 2009]
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Figure 1| Diversity of tumour invasion mechanisms. Individual or collective tumour-cell
migration strategies are determined by different molecular programmes (triangles). From
individual (top) to collective (bottom) movements, increased control of cel-ECM interaction is
provided by integrins and matrix-degrading proteases. Cell-cell adhesion through cadherins
and other adhesion receptors, as well as cell-cell communication, via gap junctions, are
specific characteristics of collective cell behaviour. Haematopoietic neoplasia (leukaemia and
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Some clinical facts about Glioblastoma multiforme (GBM)

GBM is a multifactorial disease representing the most common type of primary malignant
brain tumors, being charcterized by high invasiveness and complex clinical phenotypes.
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The open problem to identify the resection margin from MRI

The magnetic resonance imaging (MRI) is based on signals from hydrogen *H nuclei (i.e.
protons) under pulsed sequences of a strong magnetic field.

Brain tissues: Failure pattern following complete resection plus radiotherapy
. _ and temozolomide is at the resection margin in patients
@ Cerebrospinal Fluid (CSF) with glioblastoma

@ Grey matter (GM): neuron’s soma anc  Kevin Petrecca - Marie-Christine Guiot -

. Valerie Panet-Raymond * Luis Souhami
dendrites, blood vessels
Intratumoral heterogeneity in glioblastoma: don’t forget

@ White Matter (WM): neuron’s axons the peritumoral brain zone

Jean-Michel Lemée, Anne Clavreul, and Philippe Menei

1.5T 3.0T
Ty Ty T3 T Ty H PD
White matter 510 67 78 1080 70 50  0.61
Grey matter 760 7T 69 1820 100 50 0.69
Arterial blood 1441 290 55 1932 275 16 0.72
CSF 2650 280 [ 3817 1442 / 1.0

TABLE 2.1 .-\;:Fll'n.-xitla:itt- values of Ty, T. ]:\ (in ms) and proton density (non-dimensional)
for varous tissues of the brain and for two different magnetic field strengths (1.5 T and 3.0

T) [34].




The GLIOMATH project

| will present some research activities funded by the Associazione Italiana

per la Ricerca sul Cancro (AIRC) through the grant MFAG 17412.

The GLIOMATH project concerned a multi-disciplinary collaboration between

mathematicians, oncological biologists and medical doctors with
translate the patient-specific modeling of glioblastoma into clinics.
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Scientific objectives of the GLIOMATH project

The scientific objectives of the project are:

- to develop a novel mathematical framework for modelling GBM invasion
learning its mechano-biological characteristics.;

- to investigate in-vitro the impact of chemo-mechanical cues on the growth
of glioblastoma (GBM) cell lines (@ IFOM);

- To perform a clinical study, collecting a database of neuroimaging data (e.g.
about pre-operative clinical screening, surgical procedures, and post-
operative follow-up) on 30 patients with Intracranial GBM (@ Besta); A I R C

- To build a computational platform for the patient-specific modeling of
GBM growth and recursion, its response to surgery and adjuvant therapies.

For this purpose, the mathematical activities involved several young researchers with
complementary skills ranging from numerical analysis to statistics and image reconstruction.

il -

A. Agosti, PhD E. Faggiano, PhD A. Stamm, PhD C. Giverso, PhD
MOX, PoliMi Univ. Pavia Human Technopole Politecnico Torino



Experiments @IFOM



Stress-driven proliferation of GBM cells in vitro

To understand the long-term effects of prolonged mechanical stimulation on the morphology and
proliferation capacity of glioblastoma cells, we cultured T98G cells with Dextran-containing or

hypotonic medium for 6 days..
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[Pozzi et al 2019, MBE]



Effects of osmotic pressure on cell cycle

We highlight that prolonged mechanical stimuli impinge on the growth properties of glioblastoma
cells on specific cell cycle phases, ultimately limiting the proliferative capacity of tumor cells.
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Effects of osmotic pressure on cell morphology

Through energetic considerations we suggested a plausible explanation of the morphology
crossover between the two solutions, based on a competition between the isotropic response and
the splay contribution given by the cytoskeletal fibers.
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3D in-vitro systems models: multicellular tumour spheroids

Since the pioneering experiments of Sutherland and co-workers, MCTs have been used as 3D
system models to study the resistance to radiation therapies, displaying similar features in

term of growth properties and structural heterogeneity as avascular tumoral nodules.
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From 2D to 3D migration: budding of GBM cells in-vitro

We seeded Glioblastoma cells (UG-87) in a Petri dish within a nutrient-rich medium,
observing a spontaneous aggregation into clusters.
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From 2D to 3D migration: budding of tumour cells in-vitro
We employ our diffuse interface model with linear growth and reaction terms:
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Numerical FE simulations
We perfomed FE simulations using the following ensemble of initial conditions:
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Numerical simulations versus experiments
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Tumour budding is a self-similar coarsening phenomenon
We study the far-from-equilibrium kinetics of phase ordering of tumour using statistical
mechanics tools to highlight its universal features. The tumour clusters become a self-similar
ensemble at late times, we assume frame-invariance by a single characteristic length L(t), that
grow over time as the different clusters compete to select the equilibrium state.
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Clinical study @BESTA



The clinical study @Besta

After obtained the approval of the Ethical Committee of IRCCS Besta, we performed a clinical
study on a cohort of 30 patients diagnosed with GBM.
The clinical study concerned the following steps:

- Enrollment: Signed consensus of patients at first diagnosis, later confirmed from bioptic
analysis.

- Pre Surgery: Acquisition of MRI and DTI data
- Surgery: using either fluorescin or neuro-navigation tools. Bioptic results.

- Post Surgery (within 72h) : MRI and, possibly, DTI data depending on the condition of the
patient.

- Therapy: Radiotherapy (RT) and Chemo-therapy (CT) according to the Stupp protocol

- Follow-up: MRI and DRI after 1 month after the end of RT, and every 2 months afterwards.

(

Centro N.: BESTA

T 1T Titolo dello studio

ISTITUTO

NEUROLOGICO

CARLO “Analisi matematica del glioblastoma multiforme: un approccio meccano-biologico per la
RE STA creazione di strumenti oncologici personalizzati”




Summary of the clinical study

Patient | Age Tumor localization and Surgical Histology Preop MRI DOS Early postop | Late postop
characteristics resection MRI MRI
1-F 60 Corpus callosum Maximal safe GBM (WHO IV) 23/05/2017 | 30/05/2017 | 31/05/2017 DEAD
2-F 56 Left frontal Maximal safe GBM (WHO IV) 23/05/2017 | 24/05/2017 | 31/05/2017 | 02/10/2017
3-M 72 Left occipital Maximal safe GBM (WHO IV) 07/06/2017 14/06/2017 | 16/06/2017 DEAD
4-M 37 Right temporal Maximal safe Pleomorphic / / / /
xanthoastrocytoma
(WHO 1)
5-M 63 | Right temporal (Multifocal) Partial GBM (WHO IV) 26/06/2017 | 03/07/2017 | 04/07/2017 DEAD
6—-M 54 | Right temporal (Multifocal) Partial GBM (WHO IV) 05/07/2017 | 06/07/2017 | 07/07/2017 DEAD
7-F 82 Right temporo-occipital Maximal safe GBM (WHO IV) 18/07/2017 | 11/08/2017 | 16/08/2017 DEAD
8—F 76 Left parieto-occipital Maximal safe GBM (WHO IV) 01/08/2017 07/08/2017 | 09/08/2017 DEAD
9-F 47 Corpus callosum Maximal safe GBM (WHO IV) 01/08/2017 | 02/08/2017 | 04/08/2017 | 20/10/2017
10-F 75 Left fronto-parietal Maximal safe GBM (WHO IV) 02/08/2017 | 18/08/2017 | 21/08/2017 | 17/11/2017
11-M 56 Left frontal Maximal safe GBM (WHO IV) 05/09/2017 14/09/2017 | 19/09/2017 | 09/01/2018
12-M 55 Left temporo-parietal Partial GBM (WHO IV) 10/10/2017 15/11/2017 | 16/11/2017 | 17/04/2018
(2 procedures) Maximal safe (06/12/2017) | 15/12/2017 | 19/12/2017
13-M | 55 Right temporal Maximal safe GBM (WHO IV) 31/10/2017 | 02/11/2017 | 03/11/2017 | 22/01/2018
14-F 74 Left fronto-parietal Maximal safe GBM (WHO IV) 07/11/2017 | 24/11/2017 | 25/11/2017 DEAD
15-F 73 Right parietal Maximal safe GBM (WHO IV) 21/11/2017 22/11/2017 | 23/11/2017 DEAD
16-F 35 Right temporal Maximal safe GBM (WHO V) 28/11/2017 | 30/11/2017 | 04/12/2017 | 20/03/2018
17-M | 75 | Left temporal (Multifocal) Partial GBM (WHO IV) 12/12/2017 | 21/12/2017 | 22/12/2017 | 03/04/2018
18-M 73 Right fronto-parietal Maximal safe GBM (WHO IV) 19/12/2017 | 21/12/2017 | 22/12/2017 DEAD
19-M | 62 Left temporal Maximal safe AA (WHO IIl) / / / /
20-M | 57 Right frontal Maximal safe GBM (WHO IV) 06/02/2018 | 07/02/2018 | 09/02/2018 | 08/05/2018
21-M | 54 Left thalamic Maximal safe GBM (WHO IV) 07/02/2018 | 08/02/2018 | 19/02/2018 DEAD
22-F 53 Corpus callosum Biopsy AA (WHO 1l / I / /
23-F 60 Right parieto-occipital Maximal safe GBM (WHO IV) 26/02/2018 | 27/02/2018 | 01/03/2018
24-M | 55 Right parietal Maximal safe GBM (WHO IV) 27/03/2018 | 29/03/2018 | 30/03/2018
25-M | 45 Left frontal NO SURGERY / / / / g
26-F 70 Right temporal Maximal safe GBM (WHO IV) 15/05/2018 15/05/2018 | 17/05/2018
27-M | 49 Left frontal Maximal safe GBM (WHO IV) 21/05/2018 | 22/05/2018 | 23/05/2018
28-M | 55 Left temporal Maximal safe Pleomorphic / / Vi /
xanthoastrocytoma
(WHO I1)

Table 2 — Patients included in the GLIO.MATH study up to May 31st, 2018




A patient-specific model integrating DTl data
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From DTl we make a patient-specific estimation of the local values of T (the tensor of

preferential direction) and D (the oxygen diffusion tensor)
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Modelling the effect of therapies
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W0 A0

_— .

gt mm

150 mg/m* 200 mg/m?

R(p,1) = ky(1), G(. r? = k().

kci So<t<s
kR(r)={Reff i ST Sty k() = 1 kcy $3<1<s3
0 otherwise kes §; <t <54
kO otherwise

g
Rerr = amd + fmd [Agosti et al. ZAMM 2018]



Further model parameters

Brain Young modulus

Tumour cells proliferation rate

Tumour cells death rate

Healthy tissve inter-phase friction
Tumour inter-phase friction

Equilibrium cell volume fraction
Tumour cell radius

Healthy tissue interstitial fluid pressure
Tumour interstitial fluid pressure

Diffuse interface thickness, 2r\/17
Chemotactic coefficient

Hypoxia threshold

Oxygen concentration in vessels

Oxygen supply rate

Oxygen diffusion coefficient

Oxygen penetration distance

Oxygen consumption rate, D, /I?
Radiation fractions per day

Total radiotherapy treatment days

Total radiation doses, nN i

Radiation dose

Linear coefficient for RT induced cell kill
Alpha-beta ratio

Quadratic coefficient for RT induced cell kill, a(a/g)™"
Radiotherapy death rate, amd + fmd”
Concomitant chemotherapy death rate
First cycle of adjuvant CHT death rate
Remaining cycles of adjuvant CHT death rate
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[Agosti et al. ZAMM 2018]



Step 1: MRI segmentation
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[Colombo PC et al. PloSOne 2016]



Step 2: Mesh refining and labelling

extraction of the external
surfaces from the segmented
maps

smoothing of the external
surfaces

generation of the
tetrahedral meshes

refinement of the brain

mesh in the area surrounding
the tumour

creation of the labelled brain
mesh

5
g




Step 3: DTI registration

@ registration of the DTI (Diffusion Tensor Imaging) images
Dxx ny sz
D=\|Dy Dy Dy
. Do B

@ creation of six D meshes (nutrient diffusion)
@ creation of six T meshes (cells preferential directions of movement)




Step 4: Surgical removal and re-meshing

Pre-Surgery

a), b) x-slice MRI;

c) tissue labels from
segmentation;

e), f) tumor and deformed
ventricle segmentation.

In some cases we need
to reconstruct the DTI
after surgery considering
the deformation of the
ventricle




Step 5: Numerical simulations

PreSurg




Step 6: Learning from simulations and clinical data

15000
— PostRad
E e
; 10000
E
E
o
} 3
o |
E 5000 J=0.5763 40
IE _ Days
s Simu lation
“+° MRI| PreRad
—+~ MRI PostRad
0 . LD O . ”"I' — f!n x.ﬂl’_‘IE
0 50 100 150 qu-xr_mﬂ

Jaccard index J between simulated (A) and experimental (B) tumour mass.
It ranges tipically between 0.45 and 0.66 in 3D simulations of parabolic
anisotropic model based on DTI (Swanson et al. 2017)



Model-based learning from neuroimaging data
The direct simulation is very expensive from a computational viewpoint, so a trial-and-error
approach to calibrate the model results with the neuroimaging data is unfeasible.

To cut the computational cost, we implemented a model order reduction (MOR) based on the
proper orthogonal decomposition (POD).

-2.3e-02 -0.0%0.005 a o 2.1e-02

i — D te—

-1.0e+00 -06 04 0. 59e-01 7501 0402 0 020404 08 1 1.3e+00
— | L hee— — L e—

32293 d.o.f. 40 d.o.f.



Basic idea of Model Order Reduction (MOR)

For a given snapshot matrix F = |f}, ... . f}"]

« prescribe the required information content to be covered by the POD basis as ic € (0,1];
« compute the trace tr(F'F) of the correlation matrix F'F = (f]{;".f’,‘I )mi € M(N + 1,IR), where (-,-) denotes the chosen
inner product;
« set NPOP := min {m. ( ¥ /l,) Jtr(F'F) > ic}:
: i<m
« (successively) compute the eigensystem {V', 4;},_,  yroo of F'F;

f . 1 s £ rPOD
o SBLY = T lefh (1<s<N).
G

Now we reason similarly as before but this time we let k vary, in the sense that until this
point, we only endowed the ROM basis of parameter-specific information of the evolution
over time, but we want a basis able to capture the GBM dynamics over the parameters.
In order to build up such a basis, we consider the matrices

Wl IO NG . PO - I
0 g B 'Elf\“ﬁgn- .éMl. "éﬂf"hﬁ%n

And we repeat the previous algorithm to derive the ROM basis that we use to derive the
ROM system that we solve by Newton’s method with DEIM interpolation for treating the

nonlinearities
[Agosti, PC, Garcke, Hinze, M2AS, 2021



Optimization algorithm

Algorithm 1 Optimization Algorithm

Require: MRI(t=0), DTI(t=0), MRI(t=T), Py, Pyio, Pav:
1: Initialisation(MRI(t=0), DTI(t=0)) (Problem (7));
2. Target(MRI(t=T)) (Problem (20));

3. fork > 0do

4 Step 1-FOM: Fi(Initialisation, 7;) (Problem (8));

5 Compute J(F i, Py);

6 if k > 1 and J((Fyi, Py) 2 J((Fig=1, Pi=1) then

T Pupt = Pr1;

8 break;

9 elseif Kk > 1 and I.!(F;k, P&.) - J(F”;_I, pk-l)l < tOlFIJ(FU ; Pl) - J(Flo, p{))l then
10: Pﬂp; — Py;

11: break;

12: end if

13: Step 2-POD: Pi.(Fy)
14: Step 3-Assemble the ROM systems: Ax(P;) (problem (16));
15: Step 4-ROM Optimization:

16: for! > 0do

17: P« Py,

18: Step A: RN;(A;, 7, @), n)); RLi(A;, P, RN)) (problems (17),(18));
19; Step B Compute J(RNy;, 7)),

20: Step C: P, = PWG(RN,, RL;, P;) (problem (25));

21: if maxi—;__yp ((Piic: = Pu)/Py) < tolg, and

22: |J(RNyi41, Pryq) — J(RNy, Py)| < tolgy[J(RNyy, Py) — J(RNyg, Py)|and

23: |Pi41(1) = Py | < tolpg|Pp| + tolp, | Po(1) = Py| then
24: Pes1 < Pra;

25: break.

26: end if

27: end for

2% end for




Application 1: growth prediction of a primary GBM

Pre Surgery

e
s 3%
I.a .‘sl,-:-,"-r{'. -pk.
- B Pt

Post Surgery

e |

>

Iteration J(Pa) Lo F ko Sno 8.0 o E) dy Cei)
k=0 032328  (0.0002 0.08 2 10000  S640 01225 G99 0.3 0.611
MRI FOM Comparison

Concenhation
v

T = 2 months

Jaccard = 0.5359

Iteration J(Py) L, v, k.1 S, F. ':,. E, 8o Ce0
k=1 008001 0.0002  0.02352 1.9769 999999 R640.00 0.1225 693.99 0.3237 0.5TH5
MRI FOM Comparison

T = 2 months

B i’s
- ) Jaccard = 0.7823
Iteration J(P>) Lo vy k. - 8,0 '}:: E. 8o C.o
k=2 007167 00002 00213 19842 1000004 83639.95 01225 GO3.00 0.4271 0611
MRI FOM Comparison

T = 2 months

L}

o
~
~
[+-]
o

jaféé}d

Iteration k = 0 Step1201914.27 Step 21242 Step36281.31 Step 4157.8289
[teration k = 1 Step 1 201425.71 Step212.89  Step 3 2600.37  Step 4 587.07
Iteration k = 2 Step 1 213040.53 Step211.44 Step 3254443 Step442.53



Application 2: recurrence prediction after surgery

ROM (P} 20 Comparison

Pre Surgery

Jaccard = 0.5060

Ghon
6:2T8e-01
04

L]

Ceniration
1 5.235e-01
o4

0.2

l-I 162e-008

T = 34 days (PreRad) e 0

Jaccard = 0.4658

Iteration k = 0 Step 1 144575.36 Step 2 8.58 Step 3 243842  Step 4 343152
Iteration k = 1 Step 1 164645.5 Step 2 11.75  Step 36453.26  Step 4 336.09
Iterationk = 2 Step 1 135222.43 Step 27.75 Step 3 2416.61 Step445.14



Model and data fusion: a deep learning approach

The MOR reduces the computational complexity compared to the FOM, but the optimization
algorithm may require many iterations to converge, which limits its usage in clinical settings.

Thus, we proposed a deep learning approach to achieve the same accuracy at a fraction of the
computational cost of the ROM.

1" Snapshot POD Reduced Solution Estimation Parameters Estimation

9. . 58 ¢
SRR — @:...' D)) - Mo

RO S PN 0 N . 7, SN )

»~ = gnn e = e SZotoso W :

A O AN 5, @ @":.'f""":"..'@."“_?.'@ . L
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Neural networks and deep learning: basic concepts

impulses carried
toward cell body

C branches

impulses carried
away from cell body

cell body

axon
terminals

Iy Wy
axon from a neuro-n. \:?ynapse
~ WoTo

dendrile \
w

f (Z w,T; + b)

w1
" output axo:
activation
WoTo function

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Input layer

Deep neural network
Multiple hidden layers

Output layer



Direct problem: learning the ROM solution

The neural network NN approximate the map between the parameters of
the model at a specific time t and the coefficients of the reduced
solution at that time instant.

14
_ ¢ _
M 0 a%
R T BN 32
~ —'®— & ‘ : E( pegded .\}‘ . .
0 CERES X X
6n ®::x~ = (= - » ) ' v t
S N POD — 1
. a
t L “Npop -

m Propagation function: f,., = >/ | ws, Vs,
m Actvation function: LeakyRelU(x) = x>0 + 0.1x I,
m Output function is the identity function
&

3 lavers with 100 neurons each



Inverse problem: patient-specific parameter estimation

The small number of d.o.f for the reduced-ordel model justify the idea of
training a neural network for estimating the parameters of the model.

The neural network NN;,, approximate the map between the coefficients
of a pair of reduced solutions and the parameters of the model that

entail that evolution at that time instant.
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FOM versus NN solution: estimated volume

B NI N 2 N CER PR S SN S

—[ROM-NN ~— Real volume
1—INV B Estimated volume
—FOM |
ROM ; 3.0 -
2.9
< 2.0
£
v
1.5 1
1.0 4
. 0.5
~enlt — Na— — ' . 4
2 3 4 5 6 7 & 9 10 11 12 13 14 0 10 =0 =
cm Time-step

m Number of parameters set for the base construction M = 64
m Number of elements in the base Npop = 40
m Number of simulations Ng = 750



FOM versus NN solution: computational effort

Full Order Model 020 s

Reduced Order Model 5190 s
Reduced Order Model - Neural Network 5s
Parameter Estimation 5.5
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Types of Cancer VS Hospitals-

Care. Cure. Compassion,

5 Immunotherapy Treatments
o O
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0
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*» Atleast 6 drugs personalized
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The 3R principle in medical research

Replace Reduce Refine
An animal experiment is only Only the smallest number of animals Housing and experimental conditions are being
approved if no suitable alternative necessary for an experiment may be constantly optimized in order to subject
method exists, such as computer used. A clever study design provides a laboratory animals to as little stress as possible.
simulations or cell culture statistically significant result with a This includes always choosing the most
experiments. minimum number of animals. animal-friendly experimental method, promoting

non-invasive procedures, and treating any pain
the animal may be in.



In-silico modeling for boosting 3R
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Oncolytic virus therapies

Adoptive cellular immunotherapy

The therapy is based on the

G yacims use of a specific type of
43" immune system cells, called
« 3 y
i 8
- g T lymphocytes.
/ "y
” = pe g Main steps of adoptive cell
w ® . adieis. N'gh:  therapy:
. . . o B .
\ UL *3 _ 4 o T lymphocytes isolation
\ v dn S / from the patient
\ Wesl . e/
\ - P . )
N 4 A \ o Cell expansion and genetic
¥ (=7 ) manipulations
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patient

e



CAR T-Cell Therapy

protein

Make CART
cellsin the lab

YO
Insert gene
for CAR

CARTcell
Grow miillions
of CAR T cells
Infuse L
Remove blood from CART cells i
patient to get T cells o into patient i

CART cells bind
to cancer cells
and kill them ‘«f”‘*‘\.#,“

Cancer cell = “j------- Antigen



Clinical collaboration
- Anna Mondino (head of lymphocytes activation unit)

- Linda Chaabane (coordinator of 7T pre-clinical imaging

facility )
§ |.R.C.C.S. Ospedale
San Raffaele
Gruppo San Donato

28 mm x 20 mm 28 mm x 20 mm 35 mm x 35 mm

22 mm x 30 mm
ol ]

DWI transverse slice coronal slice  sagittal slice

— tumor site detection — Image segmentation




The chemo-physical fields

Local
nutrient (oxygen)
concentration

n

N\

tumor
growth /rejection
: : H&E
0 30 days FACS
T cell therapy
tumor
l growth /rejection
} : > HLE
0 30 days FACS
T cell therapy + vessel activation
tumor
l growth /rejection
} ' > H&E
0 30 days FACS



Balance equation for the tumour mass

In absence of therapy, the growth tumor mass:
® is regulated by the local interactions among healthy and tumor cells;
® is favored where there is an abundance of oxygen (peripheral ring);

® is limited where there is a lack of oxygen (core).

5 =V (m(0)Vu) +F
/.L — hﬂ:wf(rf’)) — E2Afr';

The term [ depends on tumor cells metabolism:
n

D=vy( = 0)h(0) = vy (A= 8) h(©)

Ns

where h(©) = 5(1 + ©) defines the tumor region.

N =



Reaction-diffusion equations for other chemical species

The nutrient:
® is released by the capillaries into the organ;
e diffuse against the concentration gradient;

® is consumed by the tumor;

on 1

2 = V- (DaVA) + Sa(l — A)=(2 — &) — Sahh(0)

7 SR N A 3 D s gt
diffusion - ’e‘*ase consumption

In order to reproduce the mechanism of action of the adoptive cell therapy, we introduce a
new Michaelis-Menten type term /(¢, t) in the evolution equation for «:

(0, t) = ke(£)h(0) = T h(o)



Physical parameters for tumour growth and oxygen diffusion

Parameter description Value Ref or formula

v Tumor cells proliferation rate 0.17 - 0.25 day ™" [44]

My Tumor inter-phase friction 1.37 - 3.99 (kPa-day)/mm? [45]
r Tumor cell radius 0.01 mm [46]

X  Tumor interstitial fluid pressure 1553.2 Pa [47]

e  Diffuse interface thickness 0.79 mm-v/Pa 2r, /X

r  Prostate Young modulus 6.227 - 10* Pa 48]

0  Hypoxia threshold B35 [49]

D,  Oxygen diffusion coefficient 155.52 mm? /day [49]
[, Oxygen penetration distance 0.1 mm (50]
0, Oxygen consumption rate 15552 day 1 D,/ lﬁ
ns  Oxygen concentration in vessels 0.07 mM [51]
S, Oxygen supply rate 10* day—! [52]

Table 1: Values or ranges of values for the physical parameters in the tumor model.



Reaction-diffusion equations for lymphocytes and chemokines

The local concentration of the lymphocytes depends on:
® the diffusion phenomenon;
® the exchange with the vessels regulated by the chemokines concentration;

® the movement of lymphocytes towards highly inflamed regions.

The local concentration of chemokines, in turn, depends on the lymphocytes concentration.

Ot + ¢ O

L o~

— extravasation/uptake
chemotaxis

% —DAL-V. ((3 = )QVO) +S——[L— L],
L | i

.

SN

@ = D,Aa+ Lh(¢) —d,a
Jt Nt

production



Physical parameters for immune-system dynamics and therapy

Parameter description Value Ref
D, Lymphocytes diffusion coefficient 7-107% mm?/day (53]
X Lymphocytes chemotactic coefficient 2 - 10t [-]
molecules /(mm-day)
3 Sensitivity function parameter 10* molecules /mm? [-]
S;, Lymphocytes release /uptake rate 0.08 - 0.45 day ™! [-]
; Inflammation threshold 6.022 : I =]
molecules/mm?
L,  Lymphocytes reference value 5-10% cells/mm? [-]
D,  Chemokines diffusion coefficient 0.01 - 1 mm?/day (53]
ka Chemokines production rate 2.88 - 10* - 4.32 - 10 [53]
molecules/(cells-day)
i Chemokines consumption rate 1.155 - 102 day ™! [53]

Table 2: Values or ranges of values related to the local immune-system dynamics.

Parameter description Value Ref
d  Saturation level of fractional tumor cell kill 1.43 - 7.9 day ™! [40-42]
A Exponent of fractional tumor cell kill 0.12-0.9 [40-42]
s Steepness coefficient of fractional tumor cell kill  0.14 - 5.07 [40-42]
L; Critical T cell concentration 4-10* = 6-10* cells/mm?*  [18]

Table 3: Ranges of values referred to the tumor lysis process by means of the therapy.



Numerical implementation

We extract the geometry from the MRI images by

@ 3DSlicer processing them via 3DSlicer (image segmentation) -
‘ and VMTK toolkit (geometry and mesh generation).

3D geometry with surface mesh

Prostate profile (red) from MRI.

Mesh: ~ 2-10° elements.
Geometry: 6.6 mm x 4.7 mm x 1.4 mm.

Internal mesh refined in the tumor site
0. extract tumor shape and position from the imaging data;

while(t < 30 days):
1. solve the evolution eq. for the chemokines concentration;

2. solve the evolution eq. for the lymphocytes concentration;
3. compute the immunotherapy contribution;

4. solve in monolithic way the tumor and oxygen equations;

wu

. update time and tumor field.



Simulation results




Simulation results: tumour and nutrient concentrations

t = 5 day t = 10 day

t = 15 day t = 20 day t = 15 day t = 20 day

t = 25 day t = 30 day t:25day t:30day
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Evalutating the efficiency of immunotherapy

day no therapy immunotherapy immunotherapy +
host conditioning

o

10

20

30

Table 4: Axial slices representing tumor evolution in time within different therapeutic
scenarios.



Simulation results: the threshold effect on L
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Figure 6: Temporal evolution of the tumor volume (left) and of the associated maximum
value of lymphocytes concentration (right) for distinct therapeutic scenarios: (blue) the
free growth in absence of therapy, (orange-green) immunotherapy only - case a) and (red-
purple-brown) host conditioning strategies in addition to immunotherapy - case b), with
the corresponding values of Sy shown in the legend. The blue circles indicate the curve
values at the initial times (red circles) of growth inversion.



Future developments

Further developments can be:

® include more than one tumor mass and remove the spherical-shape approximation;
® include possible preferential direction in tumor expansion:;

® model the lymphocytes growth saturation;

® more accurate validation using future experimental data;

® include data on lymphocytes tracking to evaluate the therapy level of toxicity.
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