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Innate immunity in the 
context of cancer…

Most of the current immunotherapies for 
cancer focus on adaptive immune 
responses (immune checkpoint inhibitors, 
chimeric antigen receptors, …)

But innate immune cells infiltrating the 
Tumour Micro Environment (TME) can 
interfere with adaptive immune 
responses…

& macrophages play a central role in regulating 
both innate & adaptive immune responses 
( Th1&Th2 responses, modulate NK cells, ...) 
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colocalized with  CD163+TAMs within tumor tissue, and 
this colocalization significantly shortened overall survival 
compared with other subpopulations [77].

Macrophages and dendritic cells (DCs)
cDC and pDC are two classical types of dendritic cells 
[78–81]. Among them, cDC1s favored MHC-I cross-
presentation on  CD8+T cells due to its ability to cap-
ture specific antigens, while cDC2s favored MHC-II 
cross-presentation on  CD4+T cells [79–81]. pDC is a 
DC subgroup that secretes a high level of type I IFN 
after stimulation by toll-like receptors (TLRs), which 
results in the existence of anti-tumor effects of pDC in 
TME. In vitro studies have demonstrated that properly 

activated pDC can activate T cells [82]. And in  vivo 
studies have found that pDC produces an effective 
immune response to established tumors [83]. However, 
some studies have shown that pDC has negative immu-
nomodulatory properties in the TME and is associated 
with poor clinical outcomes due to tumor tolerance 
to tumor suppression [84, 85]. #is result was attrib-
uted to the deficiency of type I IFN in regulatory pDC, 
decreased expression of costimulatory molecules, and 
upregulated expression of IDO and PD-L1 [86–88]. 
In addition, studies on esophageal cancer have shown 
that PD-L1+DC and PD-L1+TAMs are mostly concen-
trated in the extra-tumor stroma, which is related to 
poor prognosis [89]. Meanwhile, this co-localization of 

Fig. 1  TAMs mediate immune cell regulation in TME. Tumor-associated macrophages (TAMs) intricately modulate the anti-tumor immune 
response within the tumor immune microenvironment through subtle interactions with distinct immune cell subsets. TAMs activate immune 
checkpoints, downregulate antigen presentation, and secrete regulatory factors to coordinate CD8 +  T-cell responses. Additionally, TAMs suppress 
dendritic cell antigen presentation and infiltration. TAMs secrete TGF-β and CSF-1 can promote the amplification of MDSCs. Concurrently, TAMs 
recruit immune-suppressive Treg cells and inhibit the functions of NKT cells, leading to suppressive effects. By interacting with tumor-associated 
neutrophils, TAMs further facilitate tumor cell growth. Moreover, TAMs regulate NK cell activation and inhibition through distinct phenotypes. The 
diagram illustrates certain molecular mechanisms by which TAMs mediate immune cell regulation
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Abstract 
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune 
cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable 
spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response 
modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution 
of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate inter-
actions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, 
and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune inter-
actions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its 
intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. 
Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches 
for immunotherapy.
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Introduce
 !e tissues of all mammals are infiltrated by mac-
rophages, which co-develop with the different organs 
they inhabit, and to some extent, these macrophages 
maintain their numbers and phenotypes until the envi-
ronment changes. However, the vast majority of mac-
rophages in almost all tissues are divided into three 
sources: blood/bone marrow derived monocytes, tis-
sue resident macrophages and bone marrow derived 

inhibitory cells (MDSCs) [1, 2].!ese macrophages have 
typical phagocyt-related immune sentinel and clear-
ance functions, and can be well adapted to the tissues 
they live in, so that macrophages can play the func-
tion of maintaining tissue or organ homeostasis, which 
brings about the cognition that “macrophages are not 
only immune cells, but microenvironment equilibra-
tors“ [3–5]. However, when the homeostasis is broken, 
namely when inflammation, injury and canceration 
occur, the macrophage pool in the tissue will change, in 
terms of quantity, phenotype, source and proportion of 
different sources, especially the macrophage subsets that 
help the occurrence and development of tumor appear in 
the tumor tissue [5]. !ese macrophage subgroups play 
a role in inhibiting immune killing, promoting immune 
escape of tumor cells and malignant proliferation and 
metastasis.
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Spatially-structured immune cell populations: spatial distribution of macrophages 
inside solid tumours

Cancer immunotherapy

Innate immunity & oncolytic viruses

Focus on innate immunity: macrophages

Macrophages play a central role in
regulating both innate & adaptive immune
responses ( Th1&Th2 responses, modulate NK cells, ...)

Macrophages are one of the most common
cell types in solid tumours, sometimes
forming up to 80% of total tumour mass

Increased macrophage infiltration of
tumours is generally associated with poor
patient prognosis

Activated macrophages can kill cancer cells
by themselves (directly: TNF, NO,
phagocytosis), or in an indirect manner
through recruitment of other immune cells
(e.g., CTLs)

Macrophages are a heterogeneous
population of cells ...

and complications of malignancy"

Pires et al, (2011). Ch. 10 in  
"Melanoma in the clinic: Diagnosis, management 

• Why focus on macrophages?

Macrophages are one of the most common cell types in solid tumours, 
sometimes forming up to 50% of total tumour mass (breast cancer, 
melanoma, …)

• Increased macrophage infiltration of tumours is 
generally associated with poor patient prognosis …

• Heterogeneity and plasticity of phenotypes (in 
response to environmental cues)
Ø Anti-tumour M1-like cells
Ø Pro-tumour M2-like cells

  

                            
TAM = Tumour Associated Macrophages

J. Clin. Med. 2020, 9, 3226 3 of 24

metastasis [24]; other factors secreted by TAMs, such as TGF-�, VEGF, CCL8, COX-2, SPARC, MMP9,
and MMP2 contribute to the metastatic properties of cancer cells [25–30]. TAMs play a pivotal role
also in the process of epithelial to mesenchymal transition (EMT). This process promotes tumor
invasion and metastasis through the reduction of epithelial markers, such as E-cadherin, and the
induction of mesenchymal markers, such as vimentin, slug, snail, and fibronectin [31]. The TLR4/IL-10
pathway, TGF-�, and CCL18 produced by TAMs are associated with EMT [32–36]. Moreover, TAMs are
implicated in the sustainment of cancer stem cells (CSC). CSCs are a population of tumor cells,
which share some features with stem cells, being able to initiate tumorigenesis thanks to their ability
for continuous self-renewal and di↵erentiation [37]. In this context, TAMs produce soluble factors
(e.g., TGF-�, IL-6) that promote survival of CSCs [20,21,38,39]. Our group has recently found that
also GPNMB produced by macrophages induces cancer stemness via CD44 binding and release of
IL-33 [40].

 

Figure 1. Tumor-associated macrophages (TAMs) and their ambivalent role in shaping the
tumor microenvironment. On the left side, the anti-tumoral M1-like macrophages, stimulated by
immunostimulatory cytokines (e.g., IL-1�, IL-12, IL-23, TNF-↵, IFN-�). M1-like TAMs promote
the recruitment and activation of T cells by producing CXCL10, TNF-↵, and other cytokines.
Through the release of TNF-↵, ROS (Reactive Oxign Species), and NO, they can directly kill tumor
cells. M1-like macrophages induce tissue damage, maturation of APCs (Antigen Presenting Cell) and
they can actively phagocytose cancer cells. On the right side, the pro-tumoral M2-like macrophages,
release immuno-suppressive mediators, such as IL-10, TGF-�, IDO1/2, which support regulatory T
cells. These pro-tumoral immune cells promote tumor proliferation (EGF, FGF, PDGF), angiogenesis
(CXCL8, VEGF, FGF), invasion and metastasis (TGF-�), and a continuous tissue remodeling (MMPs,
cathepsins, uPAR).

Another pro-tumoral function of TAMs is related to their ability to induce and sustain angiogenesis,
supporting the formation of tumor vessels. Angiogenesis is necessary to sustain tumor growth and
progression because neo-vessels bring oxygen and nutrients to the tumor. TAMs produce several
factors that contribute to create new vessels: VEGF, TGF-�, CXCL8, PDGF but also MMP9 and TIE2
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Abstract: In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not
only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor
progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the
most abundant leucocyte subset in many cancers and play a major role in the creation of a protective
niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to
escape the immune system and to allow the tumor to proliferate and metastasize to distant sites.
Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer
growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel
immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have
been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves
as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to
convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor
cytotoxic e↵ector cells. This shift eventually leads to the reconstitution of a reactive immune landscape
able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to
reprogram TAMs with single as well as combination therapies.

Keywords: TAM; reprogramming of TAM; anti-cancer treatment; immune landscape;
immunotherapy.

1. Introduction

Macrophages are specialized phagocytic cells of the innate immune system. They belong to
the mononuclear phagocyte system, comprising both tissue resident macrophages and circulating
monocytes, which are available to be recruited at sites of inflammation and tissue damage, such as
tumors. Plasticity is one of the main features of macrophages, since they display a broad spectrum of
activation states with distinctive phenotypes and functions. Di↵erentiating monocytes, reaching the
tissues, can meet and adapt to particular local stimuli able to activate distinct genetic programs [1–5].

In this broad spectrum of activation states, two polarized extremes have been defined: the M1 (or
classically activated, pro-inflammatory/anti-tumoral) macrophages and the M2 (or alternatively
activated, anti-inflammatory/pro-tumoral). Prototypical M1 macrophages are activated by
lipopolysaccharides (LPS) and the pro-inflammatory cytokine IFN-�. M1-like macrophages are

J. Clin. Med. 2020, 9, 3226; doi:10.3390/jcm9103226 www.mdpi.com/journal/jcm
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The tumour microenvironment (TME) provides 
an essential ecological niche for cancer initiation 
and progression1–8. Inflammatory cells and media-
tors are key universal components of the TME, and 
tumour- associated macrophages (TAMs) have served as 
a paradigm for the connection between inflammation 
and cancer9.

The construction and orchestration of an inflam-
matory TME can be driven by genetic events that cause 
cell transformation and progression (the so- called 
intrinsic pathway) and by inflammatory conditions 
that predispose to neoplasia (the extrinsic pathway) 
such as inflammatory bowel disease2. There is consid-
erable diversity in the inflammatory components of the 
TME in cancers from different tissues. However, infil-
tration of myelomonocytic cells, specifically monocytes, 
macrophages and dendritic cells, represents a common 
denominator of cancers, irrespective of their origin and 
localization10.

Among myelomonocytic cells, macrophages are 
double- edged swords with dual potential in cancer, a 
reflection of their plasticity in response to environmental 
cues4,5,7. Macrophages have the potential to kill tumour 
cells, mediate antibody- dependent cellular cytotoxicity 
and phagocytosis, elicit vascular damage and tumour 
necrosis4, and activate innate or adaptive lymphoid 

cell- mediated mechanisms of tumour resistance. 
By contrast, in most established tumours, macrophages  
contribute to cancer progression and metastasis by var-
ious mechanisms, including promotion of cancer cell 
survival and proliferation, angiogenesis, and suppression 
of innate and adaptive immune responses4,5,7,11 (FIG. 1).

Macrophages have an important role in the anti-
tumour activity of chemotherapy, radiotherapy and 
monoclonal antibodies (mAbs)4,6 by mediating tumori-
cidal activity and eliciting adaptive immune responses. 
Moreover, they are an important target of current check-
point blockade immunotherapy by expressing inhibi-
tory counter- receptors (such as PDL1 and PDL2), thus 
suppressing adaptive immune responses3–6,12,13.

Strategies specifically aimed at targeting macro-
phages, including mononuclear phagocytes engineered 
for cell therapy such as chimeric antigen receptor macro-
phages (CAR- M), have entered clinical evaluation14. 
Therapeutic approaches undergoing clinical assessment 
cover a broad range of strategies, ranging from targeting 
recruitment and differentiation to functional reprogram-
ming by engaging activating or inhibitory (checkpoint) 
receptors, the latter with encouraging results15–17.

Here, we will review strategies to exploit macro-
phages as therapeutic tools and targets in cancer therapy, 
including the role of TAMs in conventional anticancer 

Myelomonocytic cells
Haematopoietic cells, including 
monocytes, macrophages and 
monocyte- derived dendritic 
cells.

Macrophages as tools and targets  
in cancer therapy
Alberto Mantovani  1,2,3 ✉, Paola Allavena1,2, Federica Marchesi  2,4 and 
Cecilia Garlanda  1,2

Abstract | Tumour- associated macrophages are an essential component of the tumour micro-
environment and have a role in the orchestration of angiogenesis, extracellular matrix remodel-
ling, cancer cell proliferation, metastasis and immunosuppression, as well as in resistance to 
chemotherapeutic agents and checkpoint blockade immunotherapy. Conversely, when appropri-
ately activated, macrophages can mediate phagocytosis of cancer cells and cytotoxic tumour 
killing, and engage in effective bidirectional interactions with components of the innate and 
adaptive immune system. Therefore, they have emerged as therapeutic targets in cancer therapy. 
Macrophage- targeting strategies include inhibitors of cytokines and chemokines involved in the 
recruitment and polarization of tumour- promoting myeloid cells as well as activators of their 
antitumorigenic and immunostimulating functions. Early clinical trials suggest that targeting 
negative regulators (checkpoints) of myeloid cell function indeed has antitumor potential. 
Finally, given the continuous recruitment of myelomonocytic cells into tumour tissues, macro-
phages are candidates for cell therapy with the development of chimeric antigen receptor 
effector cells. Macrophage- centred therapeutic strategies have the potential to complement, 
and synergize with, currently available tools in the oncology armamentarium.
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Why focus on 
macrophages?

• Tumour elimination (directly 
or through recruitment of T 
cells)

• Tumour growth
• Tumour cell migration and 

invasion
• Tumour metastasis
• Angiogenesis
• Suppression of innate and 

adaptive immune responses 
(T cell exhaustion/ 
suppression, …)

“…macrophages are double-
edged swords with dual potential 
in cancer, a reflection of their 
plasticity in response to 
environmental cues…”



Macrophages distribution in various solid 
tumours: 

2 markers are (usually) used to evaluate Tumour- 
Associated Macrophages (TAM) correlation with 
cancer progression:
- total amount of TAMs (CD68)
      …but: 

- phenotype of TAMs (as identified by specific biomarkers: 
(M1) HLA-DR, CD 80/86, iNOS …; 
(M2) CD206, CD204, CD163, stabilin, …

- also the role of TAMs in tumour progression can depend on 
their localization inside the tumour…

cohort), high density of both CD68+ TAMs significantly
correlated with lymph node metastasis (65).

The amount of CD68+ macrophages in tumor stroma in
different cohorts of patients (Chinese, Finnish, Swedish, Korean,
UK, and USA cohorts) was an independent prognostic factor for

reduced OS, DFS, and RFS of patients with breast cancer (45, 63,
68–71) (Table 2). In the two independent cohorts (totaling 677
patients) the presence of CD68high/CD4high/CD8low signature in
tumors was found to be an independent predictor of decreased
OS and RFS (72).

FIGURE 1 | Representative IHC images for the intratumoral macrophages that express CD68 as general macrophage marker and selected M2 markers. Examples
of CD68 and M2 markers (CD163, CD206, stabilin-1) are presented for breast, colorectal, lung, ovarian, and prostate cancers. These examples are reproduced from
the following publications: for breast cancer (9); colorectal cancer (54, 55); lung cancer (56, 57); ovarian cancer (58); prostate cancer (59). Image for CD206
expression in prostate cancer was kindly provided by Dr. K. Danilko, Bashkir State Medical University. For all published images copyright licenses have been
obtained from the publisher.
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Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up
to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that
originate from resident tissue-specific macrophages and from newly recruited monocytes.
TAMs’ variability strongly depends on cancer type, stage, and intratumor heterogeneity.
Majority of TAMs are programmed by tumor microenvironment to support primary tumor
growth and metastatic spread. However, TAMs can also restrict tumor growth and
metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor
growth, metastasis and in the response to cancer therapy in patients with five aggressive
types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently
metastasize into distant organs resulting in high mortality of the patients. Two major TAM
parameters are applied for the evaluation of TAM correlation with the cancer progression:
total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers.
We summarized the data generated in the wide range of international patient cohorts on
the correlation of TAMs with clinical and pathological parameters of tumor progression
including lymphatic and hematogenous metastasis, recurrence, survival, therapy
efficiency. We described currently available biomarkers for TAMs that can be measured
in patients’ samples (tumor tissue and blood). CD68 is the major biomarker for the
quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163,
CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used
as biomarkers for the functional TAM polarization. We also considered that specific role of
TAMs in tumor progression can depend on the localization in the intratumoral
compartments. We have made the conclusion for the role of TAMs in primary tumor
growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate
cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in
colorectal cancer have protective role for the patient and interfere with primary tumor growth
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for use as “normal” tissue, in addition to tissues from two con-
tralateral prophylactic mastectomies from patients with ipsilat-
eral ductal carcinoma in situ (DCIS).
Immune infiltrates detected with the pan-leukocyte marker CD45

were present in both normal and tumor tissue, but with substantially
increased density in BC (Fig. 1A). Leukocyte subsets were evaluated
by using a combination of lineage markers to identify specific sub-
populations (Figs. S1 and S2), with the complexity of these pop-
ulations shown in Fig. 1B as a percentage of the total number of
CD45+ cells in each sample. BC tissues from CTX-naïve patients
contained infiltrates dominated by T lymphocytes (CD3ε+), with
minor populations of natural killer cells (CD3ε−CD56+NKG2D+)
and B lymphocytes (CD19/20+HLA-DR+CD3−). In comparison,
myeloid-lineage cells includingmacrophages (CD14hiCD11b+HLA-
DR+), mast cells (FcεR1α+CD117+CD11b−CD49d+) and neu-
trophils (CD15+CD11b+CD49d−) were more evident in the normal
tissue from these patients. A similar immune profile was observed in
breast tissues obtained from the two prophylactic mastectomies
(Fig. 1B).

Increased Presence of Myeloid-Lineage Cells in Residual Tumors from
Patients Exposed to Neoadjuvant CTX. Comparative analysis of
residual BC tissue removed from patients after neoadjuvant CTX
revealed an obvious difference in the percentages of myeloid-
lineage cells compared with the CTX-naïve group. With some
exceptions, this difference included an increased presence of mac-
rophages as a percent of total leukocytes (Fig. 2A), as well as by
density evaluation of CSF1 receptor (CSF1R)-positive cells in tissue
by IHC (Fig. 2B). Increased percentages of mast cells (Fig. 2C) and
neutrophils (Fig. 2D) were also evident in most CTX-treated
patients, with an ≈14-fold increase in CTX-treated versus CTX-
naïve groups. Basophils (FcεR1α+CD117−CD11b−CD49d+; Fig.
2E) were highly increased in only one of six CTX-treated samples,
whereas the percentage of myeloid dendritic cells (CD11c+HLA-
DR+CD14lo/-; Fig. 2F) was unchanged. Evaluation of plasmacytoid
dendritic cells expressing CD85g/ILT7 detected an insufficient
number of events for analysis. Thus, with the exception of baso-
phils, dendritic cells, and CD15+CD11b+CD49d+ eosinophils—
which were present just at a detectable level in the tissues ex-
amined—increased presence of myeloid-lineage cells typified
residual tumors of women treated with neoadjuvant CTX.

CD68 Is Not a Macrophage-Specific Marker in Human BC. Macro-
phages are well established as regulators of murine mammary
tumorigenesis (30), where they can represent up to 80% of
leukocytes present within late stage mammary carcinomas (1). In
human BC, immunoreactivity for CD68 has been used exten-
sively for identification of macrophages, with CD68+ cell density
associated with reduced overall survival (6, 11, 14, 15).
The high number of CD68+ cells reported in the literature, and

shown in Fig. 3A, was in contrast to the limited number of
CD14hiCD11b+HLA-DR+ macrophages observed by flow
cytometry in the BC suspensions examined (Figs. 1B and 2A). To
understand this discrepancy, wefirst evaluatedCD68 expression in
BC tissue sections, compared with CD163 (a hemoglobin scav-
enger receptor also commonly used as a marker for macrophages)
and CSF1R (Fig. 3A). This comparative analysis revealed a lack of
correlation in cell density among the three markers. We next
evaluated frozen BC tissue sections by confocal microscopy after
immunofluorescent detection of CD68 in combination with
CSF1R or CD45 (Fig. 3B). Although all cells expressing high lev-
els of the CSF1R also expressed CD68, there was a distinct pop-
ulation of CD68+ cells that expressed neither CSF1R nor CD45.
CD68 did not significantly colocalize with keratin+ epithelial cells,
CD31+ endothelial cells, or smooth muscle actin α-expressing
mural cells surrounding vasculature (Fig. 3C). This expression
contrasted with murine mammary tumors isolated from MMTV-
PyMT transgenic mice (17), where CD68+ cells coexpressed
both CSF1R and the murine macrophage marker F4/80 (Fig.
S3). In agreement with historic literature (31, 32), these results
thus indicate that CD68 is not a macrophage-specific marker in
human BC.

Tumor-Infiltrating T Cells Display an Activated Phenotype. To reveal
the phenotype of T cells infiltrating BCs, we examined surface
marker and chemokine receptor expression of tissue-infiltrating
CD4+ and CD8+ T cells (Fig. 4 A and B). Specifically, both
CD4+ and CD8+ T cells displayed increased expression of ac-
tivation markers CD69 and HLA-DR compared with peripheral

Fig. 1. Leukocyte infiltration of human breast tumors. (A) Hematoxylin and
eosin (H&E) staining of tissue sections (Left) with representative immunohis-
tochemistry for CD45 (Right) shown for each. (B) Flow cytometric analysis of
leukocyte populations within human breast tumors. Results are shown as
a percent of total CD45+ cells with markers used to define specific lineages
shown below.
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Retrospective clinical studies have used immune-based biomarkers,
alone or in combination, to predict survival outcomes for women
with breast cancer (BC); however, the limitations inherent to
immunohistochemical analyses prevent comprehensive descrip-
tions of leukocytic infiltrates, aswell as evaluation of the functional
state of leukocytes in BC stroma. To more fully evaluate this com-
plexity, and to gain insight into immune responses after chemo-
therapy (CTX), we prospectively evaluated tumor and nonadjacent
normal breast tissue from women with BC, who either had or had
not received neoadjuvant CTX before surgery. Tissues were evalu-
atedbypolychromaticflowcytometry in combinationwith confocal
immunofluorescence and immunohistochemical analysis of tissue
sections. These studies revealed that activated T lymphocytes pre-
dominate in tumor tissue, whereas myeloid lineage cells are more
prominant in “normal” breast tissue. Notably, residual tumors from
an unselected group of BC patients treated with neoadjuvant CTX
contained increased percentages of infiltrating myeloid cells, ac-
companiedbyan increasedCD8/CD4T-cell ratioandhighernumbers
of granzyme B-expressing cells, compared with tumors removed
from patients treated primarily by surgery alone. These data pro-
vide an initial evaluation of differences in the immune microenvi-
ronmentof BC comparedwithnonadjacentnormal tissueand reveal
the degree to which CTX may alter the complexity and presence of
selective subsets of immune cells in tumors previously treated in the
neoadjuvant setting.

inflammation | macrophage

Several subtypes of CD45-expressing leukocytes infiltrate
breast cancer (BC), including CD4+ and CD8+ T cells,

CD20+ B cells, and multiple myeloid-lineage cells including
tumor-associated macrophages (TAMs) that are often identified
by immunohistochemical (IHC) detection of CD68 (1). High
lymphocyte infiltration is associated with increased survival in
patients <40 y of age (2) and with a favorable prognosis in
subsets of patients whose tumors are also heavily infiltrated by
TAMs (3). More specifically, large cohort studies of patients with
BC have revealed that the presence of CD68+ cells in tumor
tissue correlates with poor prognostic features (4–6), higher tu-
mor grade (7–9), increased angiogenesis (10–13), decreased
disease-free survival (6, 11, 14, 15), and increased risk for sys-
temic metastasis when assessed in conjunction with endothelial
and carcinoma cell markers (16).
The functional significance of specific leukocytes in BC de-

velopment has been implied based on experimental studies using
murine models of mammary carcinogenesis where mice harboring
homozygous null mutations in genes specifying leukocyte de-
velopment or recruitment have been evaluated. In transgenicmice
expressing the polyoma virus middle T antigen regulated by the
mouse mammary tumor virus promoter (MMTV-PyMT mice),
progression of mammary carcinomas and metastases to lungs are
reduced inmice lacking the colony-stimulating factor-1 (csf1) gene,
a cytokine critical for macrophage maturation and recruitment
(17, 18). TAMs inmammary tumor tissue are often associatedwith
vasculature (19), where their production of VEGFA fosters an-
giogenic programming of tissue (20, 21), and their production of
EGF promotes invasive tumor growth and subsequent metastases
(22, 23). Moreover, TAMs regulated by epithelial CSF1 express
higher levelsof several hypoxia-inducedgenes (iNOSandarginase-1)
that, in turn, mediate suppression of anti-tumor immunity by
blocking cytotoxic T-cell proliferation and activation (6, 24). Thus,

TAM presence and bioactivity within mammary tumors corre-
spond to their clinical activity, further indicating the importance
of TAMs, not only in promoting tumor development, but also in
suppression of anti-tumor immunity.
CD4+ T cells isolated from human BC produce high levels of

type II helper (TH2) cytokines including IL-4 and IL-13 (25, 26),
which are significant in light of studies demonstrating that several
protumor activities of TAMs are regulated by IL-4 derived from
CD4+T cells (1, 27). Based on these findings, we recently reported
that infiltration by CD68+, CD4+, and CD8+ immune cells in
human BC is predictive of overall survival, and that the ratio of
CD68 to CD8a mRNA in tumor tissue correlates with complete
pathologic response (pCR) in patients undergoing neoadjuvant
chemotherapy (CTX) for early stage BC (6). Despite the clear
correlation between these specific immune cell types and BC
clinical outcome, leukocyte complexity within tumor tissue
remains poorly described, with most studies relying on single-
marker IHC detection. Furthermore, although some studies have
examined the effects of CTX on the presence and function of
circulating peripheral blood leukocytes (28), data regarding the
effect of CTX on tumor-infiltrating immune cells are limited (29).
Herein, we evaluated leukocytic infiltrates in breast tissue

from predominantly hormone receptor positive patients who
had, or had not, received CTX before definitive surgery. In CTX-
naïve patients, we found that activated T lymphocytes comprised
the majority of immune cells within tumors, whereas myeloid-
lineage cells predominate in nonadjacent normal breast tissue. In
contrast, tumors from patients with residual disease after neo-
adjuvant CTX contained higher levels of infiltrating myeloid
cells, with a simultaneous shift away from a TH2 dominated
lymphocyte response.

Results
Increased Presence of T Cells in Tumor Tissue. To evaluate the
composition of tumor-infiltrating leukocytes in human BC,
tumors from 20 patients were evaluated by polychromatic flow
cytometry and IHC detection of leukocyte lineages in tissue
sections as described in Materials and Methods. Nine invasive
ductal carcinomas (IDC) and five invasive lobular carcinomas
(ILC)—mostly histological grade two or three—were obtained
from patients with no prior exposure to CTX (CTX-naïve) at the
time of primary surgery for early stage BC, although one patient
had received neoadjuvant tamoxifen. Six tumor samples were
obtained from patients previously treated with neoadjuvant CTX
before resection (CTX-treated), consisting entirely of grade two
or three IDC. Notably, three of six CTX-treated tumors were
HER2/neu-positive, compared with only 1 of 14 CTX-naïve
tumors, whereas both groups contained roughly equivalent per-
centages of tumors negative for estrogen, progesterone, and
HER2 receptors (triple negative). Details of tumor pathology
are outlined in Table S1. Ipsilateral nonadjacent tissue was also
obtained from seven CTX-naïve and four CTX-treated patients
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H.S.R., L.J.E., and E.S.H. contributed new reagents/analytic tools; B.R. and L.M.C. analyzed
data; and B.R. and L.M.C. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. K.P. is a guest editor invited by the Editorial
Board.
1To whom correspondence should be addressed. E-mail: lisa.coussens@ucsf.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1104303108/-/DCSupplemental.

2796–2801 | PNAS | February 21, 2012 | vol. 109 | no. 8 www.pnas.org/cgi/doi/10.1073/pnas.1104303108

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

81
.1

8.
18

8.
21

3 
on

 M
ar

ch
 4

, 2
02

4 
fr

om
 IP

 a
dd

re
ss

 8
1.

18
.1

88
.2

13
.

Leukocyte composition of human breast cancer
Brian Ruffella, Alfred Aua,b, Hope S. Rugob,c, Laura J. Essermanb,d, E. Shelley Hwangb,d, and Lisa M. Coussensa,b,1

aDepartment of Pathology and bHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143; and Departments
of cMedicine and dSurgery, University of California, San Francisco, CA 94115

Edited by Kornelia Polyak, Dana–Farber Cancer Institute, Boston, MA, and accepted by the Editorial Board July 13, 2011 (received for review March 17, 2011)

Retrospective clinical studies have used immune-based biomarkers,
alone or in combination, to predict survival outcomes for women
with breast cancer (BC); however, the limitations inherent to
immunohistochemical analyses prevent comprehensive descrip-
tions of leukocytic infiltrates, aswell as evaluation of the functional
state of leukocytes in BC stroma. To more fully evaluate this com-
plexity, and to gain insight into immune responses after chemo-
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normal breast tissue from women with BC, who either had or had
not received neoadjuvant CTX before surgery. Tissues were evalu-
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sections. These studies revealed that activated T lymphocytes pre-
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contained increased percentages of infiltrating myeloid cells, ac-
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of granzyme B-expressing cells, compared with tumors removed
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ronmentof BC comparedwithnonadjacentnormal tissueand reveal
the degree to which CTX may alter the complexity and presence of
selective subsets of immune cells in tumors previously treated in the
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Several subtypes of CD45-expressing leukocytes infiltrate
breast cancer (BC), including CD4+ and CD8+ T cells,

CD20+ B cells, and multiple myeloid-lineage cells including
tumor-associated macrophages (TAMs) that are often identified
by immunohistochemical (IHC) detection of CD68 (1). High
lymphocyte infiltration is associated with increased survival in
patients <40 y of age (2) and with a favorable prognosis in
subsets of patients whose tumors are also heavily infiltrated by
TAMs (3). More specifically, large cohort studies of patients with
BC have revealed that the presence of CD68+ cells in tumor
tissue correlates with poor prognostic features (4–6), higher tu-
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and carcinoma cell markers (16).
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expressing the polyoma virus middle T antigen regulated by the
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vasculature (19), where their production of VEGFA fosters an-
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(22, 23). Moreover, TAMs regulated by epithelial CSF1 express
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that, in turn, mediate suppression of anti-tumor immunity by
blocking cytotoxic T-cell proliferation and activation (6, 24). Thus,
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spond to their clinical activity, further indicating the importance
of TAMs, not only in promoting tumor development, but also in
suppression of anti-tumor immunity.
CD4+ T cells isolated from human BC produce high levels of

type II helper (TH2) cytokines including IL-4 and IL-13 (25, 26),
which are significant in light of studies demonstrating that several
protumor activities of TAMs are regulated by IL-4 derived from
CD4+T cells (1, 27). Based on these findings, we recently reported
that infiltration by CD68+, CD4+, and CD8+ immune cells in
human BC is predictive of overall survival, and that the ratio of
CD68 to CD8a mRNA in tumor tissue correlates with complete
pathologic response (pCR) in patients undergoing neoadjuvant
chemotherapy (CTX) for early stage BC (6). Despite the clear
correlation between these specific immune cell types and BC
clinical outcome, leukocyte complexity within tumor tissue
remains poorly described, with most studies relying on single-
marker IHC detection. Furthermore, although some studies have
examined the effects of CTX on the presence and function of
circulating peripheral blood leukocytes (28), data regarding the
effect of CTX on tumor-infiltrating immune cells are limited (29).
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naïve patients, we found that activated T lymphocytes comprised
the majority of immune cells within tumors, whereas myeloid-
lineage cells predominate in nonadjacent normal breast tissue. In
contrast, tumors from patients with residual disease after neo-
adjuvant CTX contained higher levels of infiltrating myeloid
cells, with a simultaneous shift away from a TH2 dominated
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tumors from 20 patients were evaluated by polychromatic flow
cytometry and IHC detection of leukocyte lineages in tissue
sections as described in Materials and Methods. Nine invasive
ductal carcinomas (IDC) and five invasive lobular carcinomas
(ILC)—mostly histological grade two or three—were obtained
from patients with no prior exposure to CTX (CTX-naïve) at the
time of primary surgery for early stage BC, although one patient
had received neoadjuvant tamoxifen. Six tumor samples were
obtained from patients previously treated with neoadjuvant CTX
before resection (CTX-treated), consisting entirely of grade two
or three IDC. Notably, three of six CTX-treated tumors were
HER2/neu-positive, compared with only 1 of 14 CTX-naïve
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centages of tumors negative for estrogen, progesterone, and
HER2 receptors (triple negative). Details of tumor pathology
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Goal of this talk: review some mathematical models derived over the 
past few years to investigate the roles of various TAMs on tumour 
dynamics

Single-scale models
• discrete macrophage populations: M1 vs M2

Multi-scale models
• phenotype heterogeneity (continuous phenotype variable)
• space heterogeneity (& discrete populations M1 vs M2)



Single-scale models for cancer: ODE models for the anti-tumour & pro-
tumour roles of 2 discrete macrophage populations: M1 and M2 cells

Activity-structured cells: macrophage phenotypic heterogeneity

• A simple discrete-phenotype ODE model

Macrophages heterogeneity

Modelling tumour–macrophages interactions: a discrete-phenotype ODE model
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Modelling tumour–macrophages interactions: a discrete-phenotype ODE model
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Local & Global sensitivity analysis

(a) Local sensitivity: 
vary each parameter 
at a time
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Bartha, Eftimie (2022)
submitted

that a decrease in the polarisation rate am12 (i.e., uM1 ! uM12 polar-
isation) led to larger tumours, even when we increased the initial
level of M1 macrophages (uM1 0ð Þ) or the M1 macrophages phago-
cytosis rate (dt1). We discovered that this was the result of short
half-life of M1 cells (i.e., large dm1; see Figs. 8 and 9).

Returning to Fig. 1(a), one of themain questions of this paperwas
to shed some light on the role of macrophages with mixed pheno-
types on tumour elimination/growth. Through numerical simula-
tions in Figs. 8 and 9, we showed that the percentage of uM12

macrophages depends on the elimination rates d1 and d12 (and it
probably on other parameters aswell). In particular, tumour decay/-
control can occur for both low and high uM12 percentages. Therefore,
our theoretical study suggests that unlessweknowexactly the elim-
ination rates of macrophages with different phenotypes (M1 or
mixedM1/M2) we cannot use the macrophages with mixed pheno-
types as predictors of tumour elimination (and patient survival).

The results presented in this study depend heavily on the
parameters used for the simulations. Some of these parameter val-
ues were obtained from in vitro and ex-vivo experiments (Chitu
et al., 2011; Sato et al., 2017), and therefore they could be different
from the in vivo murine parameters and even more from the
in vivo human parameters. Unfortunately, we do not have in vivo
data to parametrise these mathematical models, and our best
approach was a sensitivity and uncertainty analysis to understand
the extent of variations in model outcomes. Global sensitivity anal-
ysis (Fig. 10) revealed the parameters with the largest impact for
tumour dynamics (am21;am2; dt1; pm2 and dm12), and interestingly
these parameters were also the parameters involved in four of
the macrophage-targeted treatment approaches for cancer as iden-
tified in Joseph et al. (2015): re-polarisation of macrophages
towards an M1-like phenotype (am21;am2), suppression of
tumour-associated macrophages survival (dm12), blockade of

macrophage recruitment (pm2), and antibody-mediated elimina-
tion of tumour cells by macrophages (dt1).

Overall, the results of this study emphasise the need for a better
experimental understanding of the kinetics (doubling time, half
lives) of macrophages with different phenotypes that can be found
inside solid tumours (especially the macrophages with mixed phe-
notypes). Most of the experimental studies in the literature focus
on the kinetics of T cells Boer and Perelson, 2013; Macallan et al.,
2019, but given the importance of tumour-associated macrophages
on tumour evolution, more experimental studies are necessary to
better understand the macrophage kinetics. Unfortunately, the lack
of robust macrophage markers can lead to inaccurate macrophage
counts Jayasingam et al., 2020, which further impacts our hope of
reliable data on macrophage kinetics. Until more data will become
available, we have to continue using modelling and computational
approaches to propose hypotheses regarding the macrophage
dynamics and their interactions with various components of the
tumour microenvironment.
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Fig. 10. Global sensitivity and uncertainty analysis for variables (a) uT , (b) uM1, (c) uM12, (d) uM2 as we vary 14 parameters within the ranges specified in Table 1. Sub-panels (i)
show the mean + standard deviation, together with max/min values of these variables as we vary t. Sub-panels (ii) show the PRCC values corresponding to each of the
parameters varied in Table 1.
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Figure 3: (a) Reproduction of tumour growth data from [33] (black circles) together with the

solution of a logistic growth equation for tumour growth (red curve), as given by eq. (1a) in

the absence of any macrophages. Here Kt = 1400 and pt = 0.23, and the initial condition for

the numerical simulation of the tumour logistic growth is uT (0) = 4mm
3
. (b) Reproduction

of macrophage growth data from [30] (open circles and black squares) – where data was

transformed from number of cells to potential volume occupied by these cells (see discussion

below) – together with the solution of a logistic equation for macrophage growth (red curves),

as given by the sums of of eqns. (1b)+(1c)+(1d) when pm1 = pm12 = pm2 := pm and

dm1 = dm12 = dm2 = 0. The continuous curve was obtained for pm = 0.88 and Km = 6.72,
while the dotted curve was obtained for pm = 0.483 and Km = 6.72. The initial condition for

the numerical simulation of macrophage logistic equation is uM (0) = 0.006mm
3
(where uM

describes the total macrophage size).

• In [3] the authors have calculated that macrophages represent ⇡ 4.8% of137

the total immune infiltrates into human NSCLC. For our murine model,138

we assume that immune cell infiltrates represent up to 10% of tumour139

mass, and the macrophages represent 4.8% of these immune infiltrates.140

(Note that in [10] it was estimated that macrophages represent ⇡ 15.84%141

of all cells inside tumour tissue, and thus our assumption is not completely142

unrealistic.) Thus, for a maximum tumour volume of Kt = 1400mm3 we143

obtain a maximum macrophage volume of Km = 6.72mm3.144

• In [35] the authors calculated the diameter of an alveolar macrophage at145

⇡ 19µm. In [36] the author suggested that a volume of 1000mm3 can146

contain up to 9.39⇥107 cells of diameter 22µm, or up to 2.44⇥108 cells of147

diameter 16µm. In this study, we assume that a volume of 1000mm3 can148

contain ⇡ 108 macrophages. Thus a carrying capacity Km = 6.72mm3
149

can contain ⇡ 6.72 ⇥ 105 macrophages. These numbers are consistent150

with the experimental study in [37], where the authors showed that the151

number of macrophages from control mice ranged from 8⇥104cells/mouse152

to 2.4⇥ 105cells/mice.153

In [30], the authors measured macrophage growth, and calculated a pro-154

liferation rate between 0.487/day and 0.88/day (in di↵erent mice). In155

Figure 3 we approximated the two macrophage data sets from [30] (Fig.156

14.20.1 in [30], which shows cell numbers), where we transformed cell num-157

bers into cell volumes (using the assumptions and calculations above).158

Since in [30] the authors showed that macrophages grow logistically, we159
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.

66

(i) Model with M1 and M2 (ii) Model with M1, M12, M2

• Tumour most sensitive to changes in pt (tumour growth rate); pm1 (M1 cells growth rate); KT (tumour carrying
capacity)

• In the long term, it seems that tumour more sensitive to dt1 compared to dt2 (quite difficult to see here)

(b) Global sensitivity: 
vary all parameters

(a) (b)

(c)

p

m1
p

dt
dm1
dm2

KT
*KT

Km
rm

αm1
αm2

m2

t
p

(d)

r

dm2

m12p
p

p
m12

m2

m1

pt

m1

m12

r

d

m2

dt2

dt1

d

m21

KT
*

αm1

KT

Km

αm2
α

α

m12

(e)

p p
t m2m2m1

dm1dt d m αm1 αm2K K*
TT Km rp

(f)

α

αm12

αm21rm2K m

KTt

m1

m12

m2

t1

t2

m1 m2 m12 m1

m2

p p
p p

d
d

d

m12d
d

TK
r α

*

Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
all model parameters within their ranges (sampling by LHS) in time. The black curve shows
the mean of the results, while the light grey area presents the minimum and maximum of the
model outcome and the dark grey area shows the mean±standard deviation. We show the local
sensitivity to all parameters of (c) Model (1) and (d) Model (2) in time. We show the global
sensitivity analysis via the PRCC of all parameters from (e) Model (1) and from (f) Model (2).
The applied parameters and ranges can be found in Table 4 and the initial conditions of the
variables in Table 5.
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Figure 22. Uncertainty and Sensitivity Analysis of the two model for the tumour (XT ) with
respect to all parameters: uncertainty analysis of (a) Model (1) and (b) Model (2) as we vary
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the mean of the results, while the light grey area presents the minimum and maximum of the
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Bartha, Eftimie (2022)
submitted

that a decrease in the polarisation rate am12 (i.e., uM1 ! uM12 polar-
isation) led to larger tumours, even when we increased the initial
level of M1 macrophages (uM1 0ð Þ) or the M1 macrophages phago-
cytosis rate (dt1). We discovered that this was the result of short
half-life of M1 cells (i.e., large dm1; see Figs. 8 and 9).

Returning to Fig. 1(a), one of themain questions of this paperwas
to shed some light on the role of macrophages with mixed pheno-
types on tumour elimination/growth. Through numerical simula-
tions in Figs. 8 and 9, we showed that the percentage of uM12

macrophages depends on the elimination rates d1 and d12 (and it
probably on other parameters aswell). In particular, tumour decay/-
control can occur for both low and high uM12 percentages. Therefore,
our theoretical study suggests that unlessweknowexactly the elim-
ination rates of macrophages with different phenotypes (M1 or
mixedM1/M2) we cannot use the macrophages with mixed pheno-
types as predictors of tumour elimination (and patient survival).

The results presented in this study depend heavily on the
parameters used for the simulations. Some of these parameter val-
ues were obtained from in vitro and ex-vivo experiments (Chitu
et al., 2011; Sato et al., 2017), and therefore they could be different
from the in vivo murine parameters and even more from the
in vivo human parameters. Unfortunately, we do not have in vivo
data to parametrise these mathematical models, and our best
approach was a sensitivity and uncertainty analysis to understand
the extent of variations in model outcomes. Global sensitivity anal-
ysis (Fig. 10) revealed the parameters with the largest impact for
tumour dynamics (am21;am2; dt1; pm2 and dm12), and interestingly
these parameters were also the parameters involved in four of
the macrophage-targeted treatment approaches for cancer as iden-
tified in Joseph et al. (2015): re-polarisation of macrophages
towards an M1-like phenotype (am21;am2), suppression of
tumour-associated macrophages survival (dm12), blockade of

macrophage recruitment (pm2), and antibody-mediated elimina-
tion of tumour cells by macrophages (dt1).

Overall, the results of this study emphasise the need for a better
experimental understanding of the kinetics (doubling time, half
lives) of macrophages with different phenotypes that can be found
inside solid tumours (especially the macrophages with mixed phe-
notypes). Most of the experimental studies in the literature focus
on the kinetics of T cells Boer and Perelson, 2013; Macallan et al.,
2019, but given the importance of tumour-associated macrophages
on tumour evolution, more experimental studies are necessary to
better understand the macrophage kinetics. Unfortunately, the lack
of robust macrophage markers can lead to inaccurate macrophage
counts Jayasingam et al., 2020, which further impacts our hope of
reliable data on macrophage kinetics. Until more data will become
available, we have to continue using modelling and computational
approaches to propose hypotheses regarding the macrophage
dynamics and their interactions with various components of the
tumour microenvironment.
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Fig. 10. Global sensitivity and uncertainty analysis for variables (a) uT , (b) uM1, (c) uM12, (d) uM2 as we vary 14 parameters within the ranges specified in Table 1. Sub-panels (i)
show the mean + standard deviation, together with max/min values of these variables as we vary t. Sub-panels (ii) show the PRCC values corresponding to each of the
parameters varied in Table 1.
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! While we estimated the carrying capacities of cells in Sec-
tion 2.2, it is almost impossible to estimate the carrying capac-
ity for ECM. In this theoretical study, we assume that the ECM
density can be as low as the macrophage density or as high as
the tumour density, and so we choose Ke 2 70;500½ #.

! Experimental studies (Grabher et al., 2007) have shown that the
randommovement coefficient for macrophages can vary (in dif-
ferent tissues) between 2$ 188lm2/min % 2:88& 10$5$
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Fig. 4. The PRCC index (calculated using the pcc function in R) for (a), (b) XT ; (c), (d) XM1; (e), (f) XM2; (g) XM12. The left columns correspond to the variables for the reduced
model (with XM12 ¼ 0), while the right columns correspond to the variables in the full model (1). The parameters used for the sensitivity analysis, and their ranges can be
found in Table 1; the initial conditions for the variables can be found in Table 2. For LHS, the parameters were sampled independently (1000 times) from the ranges listed in
Table 1. A PRCC value close to (1 would mean that the parameter has an impact on the output, while a value close to 0 suggests no impact. The circles and the bars show the
estimated PRCC indices, as well as the bias and confidence intervals for these indices (as estimated by the pcc function).
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Important param:
• M1 cells: 𝛼!";
• M2 cells: 𝛼!", 𝑑!", 𝑝!"

Important param:
• Tumour cells:
	 𝛼!", 𝑑#$, 𝑝#

Single-scale models for cancer: ODE models for the anti-tumour & pro-
tumour roles of 2 discrete macrophage populations: M1 and M2 cells



“However, findings that patients with similar compositions of infiltrating immune cells have different 
prognoses are not well explained, suggesting further exploration is needed on the TIME.” 
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Abstract 
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunologi-
cal components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be 
strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate 
the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innova-
tive high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and 
depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and 
role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in 
the study of the spatial architecture of the TIME and categorized the description methods used to characterize these 
structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects 
of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical 
value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects 
in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem 
research, to the attention of more researchers and promote its application in tumor research and clinical practice.
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Background
Over the past few centuries, the concept of tumor has 
evolved from a simple aggregation of abnormally pro-
liferating cells into a highly organized “organ”. Various 
components that compose tumors are termed the tumor 
microenvironment (TME) (1). Although the specific 
composition of the TME varies between tumor types, 
most of them share hallmark characteristics, includ-
ing tumor cells, immune cells, stromal cells, extracellu-
lar matrix (ECM), vessels, soluble factors, and physical 

properties (Table 1) (2–5). Within the TME, all immune 
components are specifically defined as the tumor 
immune microenvironment (TIME) because of their 
unique internal interactions and essential roles in tumor 
biology, which comprises innate immune cells, adaptive 
immune cells, extracellular immune factors, and cell sur-
face molecules (4, 6, 7). Studies have focused on the com-
position of immune cells in the TIME, and established 
mature theories and clinical applications (4, 8). For exam-
ple, triple-negative breast cancer  (TNBC) with more T 
cell infiltration generally presents better prognosis than 
those with less T cell inflamed (9). However, findings that 
patients with similar compositions of infiltrating immune 
cells have different prognoses are not well explained 
(10, 11), suggesting further exploration  is needed on the 
TIME.
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lar matrix (ECM), vessels, soluble factors, and physical 

properties (Table 1) (2–5). Within the TME, all immune 
components are specifically defined as the tumor 
immune microenvironment (TIME) because of their 
unique internal interactions and essential roles in tumor 
biology, which comprises innate immune cells, adaptive 
immune cells, extracellular immune factors, and cell sur-
face molecules (4, 6, 7). Studies have focused on the com-
position of immune cells in the TIME, and established 
mature theories and clinical applications (4, 8). For exam-
ple, triple-negative breast cancer  (TNBC) with more T 
cell infiltration generally presents better prognosis than 
those with less T cell inflamed (9). However, findings that 
patients with similar compositions of infiltrating immune 
cells have different prognoses are not well explained 
(10, 11), suggesting further exploration  is needed on the 
TIME.
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Abstract

Macrophages are critical mediators of tissue homeostasis, with tumours distorting this

proclivity to stimulate proliferation, angiogenesis and metastasis. This had led to an interest

in targeting macrophages in cancer, and preclinical studies have demonstrated efficacy

across therapeutic modalities and tumour types. Much of the observed efficacy can be traced

to the suppressive capacity of macrophages, driven by microenvironmental cues such as

hypoxia and fibrosis. As a result, tumour macrophages display an ability to suppress T cell

recruitment and function as well as to regulate other aspects of tumour immunity. With the

increasing impact of cancer immunotherapy, macrophage targeting is now being evaluated in

this context. Here, we discuss the results of clinical trials and the future of combinatorial

immunotherapy.
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Macrophage subtype densities in the
tumor center and periphery

Total macrophages and their subtypes were compared between
the tumor center and the peripheral region, comprising both the

tumor tissue in the peripheral region and the normal liver
immediately adjacent to the tumor (Table 2).

The tumor periphery demonstrated significantly higher
densities of total CD68+ macrophages (median of 68.28 cells/
mm2) compared to the tumor center (12.96 cells/mm2) (Figure 3).

A

B C

FIGURE 2

(A) Workflow of mIF digital image analysis. After image scanning, raw images (i) were prepared by activating the fluorochromes attached to the
surface proteins (ii). Tissue segmentation was performed by training the software using representative examples from each compartment (iii). Cell
limits were defined, and cells were individually identified (iv). Phenotyping of cells based on expression of surface proteins (v). (B) Composite image
of tumor center after image preparation (i) and representative examples of all the markers included in the macrophage panel (ii-viii). (C) CD68+
macrophages (i) and their colocalization examples (ii-v). Images were generated using Vectra Polaris 1.0.13 scanner system and InForm 2.4.8 image
analysis software (Akoya Biosciences).

TABLE 2 Macrophage population density in the tumor center compared with adjacent normal liver and tumor periphery.

Macrophage phenotype, median
(range), number per mm2

Tumor
center

Peripheral
normal liver

p for tumor
center vs. liver

Tumor
center

Tumor
periphery

p for tumor center vs.
periphery (tumor)

Total macrophages (CD68+) 12.96
(3.55-
62.29)

12.69 (2.39-
93.26)

0.739 12.96
(3.55-
62.29)

68.28 (6.83-
193.09)

0.019

M1 (CD68+ MRP8-14+ CD163neg CD206
neg Arg-1 neg)

0 (0-0.78) 0 (0-21.54) 0.353 0 (0-0.78) 0 (0-19.97) 0.721

M1 (CD68+ CD86+CD163neg

CD206negArg1 neg)
0 (0-0.34) 0 (0-0.47) 0.739 0 (0-0.34) 0 (0-1.23) 0.3125

M1 (CD68+ CD86+ MRP8-14+
CD163negCD206 neg Arg1 neg)

0 (0) 0 (0) – 0 (0) 0 (0) –

M2 (CD68+ CD163+ MRP8-14 negCD86
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Macrophage subtype densities in the
tumor center and periphery

Total macrophages and their subtypes were compared between
the tumor center and the peripheral region, comprising both the

tumor tissue in the peripheral region and the normal liver
immediately adjacent to the tumor (Table 2).

The tumor periphery demonstrated significantly higher
densities of total CD68+ macrophages (median of 68.28 cells/
mm2) compared to the tumor center (12.96 cells/mm2) (Figure 3).

A
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FIGURE 2

(A) Workflow of mIF digital image analysis. After image scanning, raw images (i) were prepared by activating the fluorochromes attached to the
surface proteins (ii). Tissue segmentation was performed by training the software using representative examples from each compartment (iii). Cell
limits were defined, and cells were individually identified (iv). Phenotyping of cells based on expression of surface proteins (v). (B) Composite image
of tumor center after image preparation (i) and representative examples of all the markers included in the macrophage panel (ii-viii). (C) CD68+
macrophages (i) and their colocalization examples (ii-v). Images were generated using Vectra Polaris 1.0.13 scanner system and InForm 2.4.8 image
analysis software (Akoya Biosciences).
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Background: The liver is the most typical site of metastatic disease for patients
with colorectal cancer (CRC), and up to half the patients with CRC will develop
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particularly macrophages and their spatial distribution, can give us critical
insight into treatment.

Methods: Ten CLMs (five treatment-naïve and five post–neoadjuvant
chemotherapy) were stained with multiplex immunofluorescence panels
against cytokeratins, CD68, Arg1, CD206, CD86, CD163, PD-L1, and MRP8-14.
Densities of cell phenotypes and their spatial distribution in the tumor center and
the normal liver–tumor interface were correlated with clinicopathological
variables.

Results: M2 macrophages were the predominant subtype in both the tumor
center and the periphery, with a relatively higher density at the periphery. The
larger tumors, more than 3.9 cm, were associated with higher densities of total
CD68+ macrophages and CD68+CD163+ CD206neg and CD68+CD206+
CD163neg M2 macrophage subtypes. Total macrophages in the tumor
periphery demonstrated significantly greater proximity to malignant cells than
did those in the tumor center (p=0.0371). The presence of higher than median
CD68+MRP8-14+CD86neg M1 macrophages in the tumor center was associated
with poor overall survival (median 2.34 years) compared to cases with lower than
median M1 macrophages at the tumor center (median 6.41 years) in univariate
analysis.
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drive new therapeutic approaches in CLM patients.
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Abstract

Macrophages are critical mediators of tissue homeostasis, with tumours distorting this

proclivity to stimulate proliferation, angiogenesis and metastasis. This had led to an interest

in targeting macrophages in cancer, and preclinical studies have demonstrated efficacy

across therapeutic modalities and tumour types. Much of the observed efficacy can be traced

to the suppressive capacity of macrophages, driven by microenvironmental cues such as

hypoxia and fibrosis. As a result, tumour macrophages display an ability to suppress T cell

recruitment and function as well as to regulate other aspects of tumour immunity. With the

increasing impact of cancer immunotherapy, macrophage targeting is now being evaluated in

this context. Here, we discuss the results of clinical trials and the future of combinatorial

immunotherapy.
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Abstract

Macrophages are critical mediators of tissue homeostasis, with tumours distorting this

proclivity to stimulate proliferation, angiogenesis and metastasis. This had led to an interest

in targeting macrophages in cancer, and preclinical studies have demonstrated efficacy

across therapeutic modalities and tumour types. Much of the observed efficacy can be traced

to the suppressive capacity of macrophages, driven by microenvironmental cues such as

hypoxia and fibrosis. As a result, tumour macrophages display an ability to suppress T cell

recruitment and function as well as to regulate other aspects of tumour immunity. With the

increasing impact of cancer immunotherapy, macrophage targeting is now being evaluated in

this context. Here, we discuss the results of clinical trials and the future of combinatorial

immunotherapy.
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Higher densities of CD68+CD163+, CD68++CD163+, and
CD68+CD206+ macrophages were found within the tumor
regions when compared with normal tissues suggesting that these
populations were polarized according to their location in the tumor
microenvironment (Fig. 2c).

The localization of TAMs with respect to the tumor-nest and
stromal areas (defined in Fig. 1c) was further examined. The
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7 TAM sub-populations:
• 2 M1-like phenotypes
• 5 M2-like phenotypes
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Tumor-associated macrophages (TAMs), one of the most abundant immune components in

gastric cancer (GC), are difficult to characterize due to their heterogeneity. Multiple

approaches have been used to elucidate the issue, however, due to the tissue-destructive

nature of most of these methods, the spatial distribution of TAMs in situ remains unclear.

Here we probe the relationship between tumor context and TAM heterogeneity by multiplex

immunohistochemistry of 56 human GC cases. Using distinct expression marker profiles on

TAMs, we report seven predominant populations distributed between tumor and non-tumor

tissue. TAM population-associated gene signatures reflect their heterogeneity and polar-

ization in situ. Increased density of CD163+ (CD206−) TAMs with concurrent high CD68

expression is associated with upregulated immune-signaling and improved patient survival by

univariate, but not multivariate analysis. CD68-only and CD206+ TAMs are correlated with

high PDL1 expression.
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Activity-structured cells: macrophage phenotypic heterogeneity
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Abstract

Macrophages are critical mediators of tissue homeostasis, with tumours distorting this

proclivity to stimulate proliferation, angiogenesis and metastasis. This had led to an interest

in targeting macrophages in cancer, and preclinical studies have demonstrated efficacy

across therapeutic modalities and tumour types. Much of the observed efficacy can be traced

to the suppressive capacity of macrophages, driven by microenvironmental cues such as

hypoxia and fibrosis. As a result, tumour macrophages display an ability to suppress T cell

recruitment and function as well as to regulate other aspects of tumour immunity. With the

increasing impact of cancer immunotherapy, macrophage targeting is now being evaluated in

this context. Here, we discuss the results of clinical trials and the future of combinatorial

immunotherapy.
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Higher densities of CD68+CD163+, CD68++CD163+, and
CD68+CD206+ macrophages were found within the tumor
regions when compared with normal tissues suggesting that these
populations were polarized according to their location in the tumor
microenvironment (Fig. 2c).

The localization of TAMs with respect to the tumor-nest and
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Tumor-associated macrophages (TAMs), one of the most abundant immune components in

gastric cancer (GC), are difficult to characterize due to their heterogeneity. Multiple

approaches have been used to elucidate the issue, however, due to the tissue-destructive

nature of most of these methods, the spatial distribution of TAMs in situ remains unclear.

Here we probe the relationship between tumor context and TAM heterogeneity by multiplex

immunohistochemistry of 56 human GC cases. Using distinct expression marker profiles on

TAMs, we report seven predominant populations distributed between tumor and non-tumor

tissue. TAM population-associated gene signatures reflect their heterogeneity and polar-

ization in situ. Increased density of CD163+ (CD206−) TAMs with concurrent high CD68

expression is associated with upregulated immune-signaling and improved patient survival by

univariate, but not multivariate analysis. CD68-only and CD206+ TAMs are correlated with

high PDL1 expression.
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Tumor-associated macrophages (TAMs), one of the most abundant immune components in

gastric cancer (GC), are difficult to characterize due to their heterogeneity. Multiple

approaches have been used to elucidate the issue, however, due to the tissue-destructive

nature of most of these methods, the spatial distribution of TAMs in situ remains unclear.

Here we probe the relationship between tumor context and TAM heterogeneity by multiplex

immunohistochemistry of 56 human GC cases. Using distinct expression marker profiles on

TAMs, we report seven predominant populations distributed between tumor and non-tumor

tissue. TAM population-associated gene signatures reflect their heterogeneity and polar-

ization in situ. Increased density of CD163+ (CD206−) TAMs with concurrent high CD68

expression is associated with upregulated immune-signaling and improved patient survival by

univariate, but not multivariate analysis. CD68-only and CD206+ TAMs are correlated with

high PDL1 expression.
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Fig. 1 Identification and characterization of macrophage populations. a Regions of interest (ROIs): adjacent normal tissue (N), margin (M), edge (E), and
core (C). Scale bar: 100 µm. b Representative composite and single-stained IHC images of the multiplex IHC panel. Scale bar: 100 µm. c H&E, single-stained
AE1AE3, and tissue-component segmentation of the same region. Scale bar: 100 µm. d Multiplex IHC panel design: gating strategy for each TAM
population (numbered). e Seven major TAM populations. Positivity (+) of corresponding markers and relative intensity between populations is indicated.
Scale bar: 10 µm. f Marker signatures used for TAM population characterization in patient samples (n= 35). Relative normalized intensity: relative original
intensity of each marker divided by exposure time. g, h 3D plots showing the intensities of TAM populations from (g) single cells (n= ~8.5 × 106 from 56
patients) and (h) averaged per patient (n= 35). Unit of axis: Normalized intensity. Key: Orange: CD68+CD206++, Brown: CD68+CD206+, Green:
CD68+, Yellow: CD68+IRF8+, Dark red: CD68++CD163+, Red: CD68+CD163+, and Purple: CD68+CD163+CD206+. TAM populations are as
numbered in (d) and (e)

Cor
e

Edg
e

Mar
gin

Cor
e

Edg
e

Mar
gin Cor

e
Edg

e

Mar
ginCor

e
Edg

e

Mar
gin

Cor
e
Edg

e

Mar
gin Cor

e
Edg

e

Mar
gin Cor

e
Edg

e

Mar
gin Cor

e
Edg

e

Mar
gin Cor

e
Edg

e

Mar
gin

0

500

1000

1500

2000

2500

3000

3500

CD68+CD163+CD206+

D
en

si
ty

 (c
el

l/m
m

2 )
D

en
si

ty
 (c

el
l/m

m
2 )

D
en

si
ty

 (c
el

l/m
m

2 )

D
en

si
ty

 (c
el

l/m
m

2 )

D
en

si
ty

 (c
el

l/m
m

2 )

D
en

si
ty

 (c
el

l/m
m

2 )

 

Tumor-nest
Stroma

** *

0

200

400

600

800

1000

1200

CD68+IRF8+

Tumor-nest
Stroma

** **

0

500

1000

1500

2000

2500

CD68+CD206+

Tumor-nest
Stroma

n.s. n.s.

Cor
e

Edg
e

Mar
gin

Nor
mal

0

1

2

3

4

5

M1-like/M2-like

R
at

io

**

CD68
+IR

F8+

CD68
+

CD68
+C

D16
3+

CD68
++

CD16
3+

CD68
+C

D20
6+

+

CD68
+C

D20
6+

CD68
+C

D16
3+

CD20
6+

0

250

500

750

1000

1250

1500

2000

3000
Macrophages in regions of interest

D
en

si
ty

 (c
el

l/m
m

2 )
 

Core (46)
Edge (30)

Margin (26)

Normal (28)***

***

**

n.s
.

* ***

n.s
.

**

***

0

500

1000

1500

2000

2500

3000

3500
CD68+CD163+CD206+

Tumor-nest
Stroma

***
***

***

0

200

400

600

800

1000

1200
CD68+IRF8+

Tumor-nest
Stroma

***

***

***

0

500

1000

1500

2000

2500
CD68+CD206+

Tumor-nest
Stroma

**
**

*

a

b

c

d

e

Cor
e

Edg
e

Mar
gin

Nor
mal

0

2000

4000

6000

8000

Macrophage

D
en

si
ty

 (c
el

l/m
m

2 ) 

*
*

Fig. 2 Distinct distribution of TAM population densities across regions of interest. a–c Spatial distribution of TAM populations: a Overall TAM density,
b M1-like to M2-like ratio, and c Density of each TAM population. Core (red circle): n= 46, edge (green triangle): n= 30, margin (blue square): n= 26,
normal (white circle): n= 28. d, e Density of selected TAM populations between the Tumor-nest (dark red square) and Stroma (dark green triangle) areas
(d) among the ROIs and (e) in matched (dash line) patient samples. Box and whiskers represent mean ± 10–90 percentile. Each point represents one
patient. *p < 0.05, **p < 0.01, ***p < 0.001 and not significant (n.s.). Mann–Whitney U test
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Fig. 1 Identification and characterization of macrophage populations. a Regions of interest (ROIs): adjacent normal tissue (N), margin (M), edge (E), and
core (C). Scale bar: 100 µm. b Representative composite and single-stained IHC images of the multiplex IHC panel. Scale bar: 100 µm. c H&E, single-stained
AE1AE3, and tissue-component segmentation of the same region. Scale bar: 100 µm. d Multiplex IHC panel design: gating strategy for each TAM
population (numbered). e Seven major TAM populations. Positivity (+) of corresponding markers and relative intensity between populations is indicated.
Scale bar: 10 µm. f Marker signatures used for TAM population characterization in patient samples (n= 35). Relative normalized intensity: relative original
intensity of each marker divided by exposure time. g, h 3D plots showing the intensities of TAM populations from (g) single cells (n= ~8.5 × 106 from 56
patients) and (h) averaged per patient (n= 35). Unit of axis: Normalized intensity. Key: Orange: CD68+CD206++, Brown: CD68+CD206+, Green:
CD68+, Yellow: CD68+IRF8+, Dark red: CD68++CD163+, Red: CD68+CD163+, and Purple: CD68+CD163+CD206+. TAM populations are as
numbered in (d) and (e)
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Fig. 2 Distinct distribution of TAM population densities across regions of interest. a–c Spatial distribution of TAM populations: a Overall TAM density,
b M1-like to M2-like ratio, and c Density of each TAM population. Core (red circle): n= 46, edge (green triangle): n= 30, margin (blue square): n= 26,
normal (white circle): n= 28. d, e Density of selected TAM populations between the Tumor-nest (dark red square) and Stroma (dark green triangle) areas
(d) among the ROIs and (e) in matched (dash line) patient samples. Box and whiskers represent mean ± 10–90 percentile. Each point represents one
patient. *p < 0.05, **p < 0.01, ***p < 0.001 and not significant (n.s.). Mann–Whitney U test
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Compared with M1 macrophages, CPD, SERPINB9, WARS, HIVEP1,
PAG1, ERAP2, ACTR6, SPATA2, UBXN4, TMEM189, IQGAP2, SDF4,
AP153, LRRFLP2, TM2D3, STK38, UBR2, IST1, MED16, METAP2,
DBF4, PIHID1, ZNF37A, PUS7L, and SEL61A were significantly
downregulated inM2macrophages, whereasKMT2C, PLOD1, PACS2,

BCL2L1, PAQR4, HAMP, MFSD12, and UBTD1 were significantly
upregulated in M2 macrophages (Supplementary Fig. S4B). After
confirming their expression in M1 and M2 macrophages, we deter-
mined the strength of correlations between each validated gene and
TAM-related markers (CSF1R and CD163), using cBioPortal for

Figure 3.
Spatial density of M1/M2 TAMs in human lung cancer samples and its correlations with survival and clinicopathologic characteristics. A, Representative composite
images of TMA cores for adenocarcinoma (adeno), large-cell carcinoma (LCC), and squamous cell carcinoma (SCC). Pseudocolor illustration of CD68 (cyan),
cytokeratin (green), IL12 (magenta), CCR7 (pink), CD163 (red), ALOX15 (yellow), and DAPI (gray) staining. Scale bar, 100 mm. B, Representative image showing the
segmentation of the parenchyma from the stroma based on cytokeratin staining. Colored areas show the parenchyma, and the color gradient of colors denotes the
edge of the parenchyma (blue) to an infiltration depth of 100 mm (red). Representative phenotypemap (right; enlarged area denoted by the white circle), generated
using HALO software to illustrate M1 TAMs (yellow dots), M2 TAMs (red dots), tumor cells (green dots), and other cell types (gray dots) from subsections of the
segmented tissue. In the phenotype map, a blue line encircles the parenchyma. C and D, Comparisons of the M1 and M2 TAM densities between TC and IM (C) and
between the stroma and parenchyma (D) in segmented tissues. The data are presented as themedian and interquartile ranges, and statistical significance (P <0.017)
was determined with the Kruskal–Wallis test. E and F, Comparisons of the M1 and M2 TAM densities at TC (E) and IM (F) of the TMA cores among the various lung
cancer subtypes. The data are presented as themedian and interquartile ranges, and statistical significance (P <0.010)was determined using the Kruskal–Wallis test.
G,Kaplan–Meier survival analyses ofM1/M2 TAMdensity–related parameters in tissue samples frompatientswith lung cancer. Patientswere divided into the high and
low groups, based on TAM densities above and below the median values, respectively. The calculations were based on all patients who reached the overall survival
endpoint. P values reflect the comparisons between two groups by univariate analysis using the log-rank test.
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Spatial Density and Distribution of Tumor-Associated
Macrophages Predict Survival in Non–Small Cell Lung
Carcinoma
Xiang Zheng1, Andreas Weigert2, Simone Reu3, Stefan Guenther1, Siavash Mansouri1, Birgit Bassaly4,
Stefan Gattenl€ohner4, Friedrich Grimminger5, Soni Savai Pullamsetti1,5, Werner Seeger1,5,6,
Hauke Winter7, and Rajkumar Savai1,5,6,8

ABSTRACT
◥

The respective antitumoral and protumoral roles of M1 and M2
tumor-associated macrophages (TAM) typify the complexity of
macrophage function in cancer. In lung cancer, density and topol-
ogy of distinct TAMphenotypes at the tumor center (TC) versus the
invasive margin (IM) are largely unknown. Here, we investigated
TAM subtype density and distribution between TC and IM in
human lung cancer and TAM associations with overall survival.
Macrophages isolated from adjacent nontumor tissue (NM), the TC
(TC-TAM), and the IM (IM-TAM) were analyzed with RNA-
sequencing (RNA-seq). Lung tumor tissue microarrays from 104
patient samples were constructed. M1 and M2 TAMs were
identified using multiplex immunofluorescence staining and a
tumor cell-TAM proximity analysis was performed. RNA-seq
identifiedmarked differences amongNM, TC-TAM, and IM-TAM.
On the basis of a panel of five selected markers (CD68, IL12, CCR7,
CD163, and ALOX15), M2 predominance over M1 and M2
proximity to tumor cells was observed, especially at IM. Tumor
cell proximity to TAM was linked with tumor cell survival and
hypoxia was associated with accumulation of M2 TAM. Notably,
lower density of M1 TC-TAM and higher proximity of tumor cells
to M2 IM-TAM or lower proximity to M1 IM-TAM were linked
with poor survival. In addition, three novel molecules (UBXN4,

MFSD12, and ACTR6) from RNA-seq served as potential prog-
nostic markers for lung cancer, and M2 predominance and juxta-
position of M2 TAM near tumor cells were associated with poor
survival. Together, our results reveal the marked heterogeneity of
TAM populations in different tumor regions, with M2 TAM
predominance, particularly at IM.

Significance: This study underlines the significance of the
density, spatial distribution, and gene expression of TAM pheno-
types as prognostic factors for overall survival in lung cancer.

Graphical Abstract: http://cancerres.aacrjournals.org/content/
canres/80/20/4414/F1.large.jpg.

Multiplex staining demonstrates that spatial density and distribution of TAMs are independent predictors of lung cancer survival.
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Introduction
Despite advances in understanding the molecular mechanisms, and

improvements in diagnostics and treatment, lung cancer remains the
leading cause of cancer-relatedmorbidity andmortalityworldwide (1).
Lung cancer is classified into small-cell and non–small cell lung
carcinoma (NSCLC) in which adenocarcinoma, squamous cell carci-
noma, and large-cell carcinoma are the major histologic subtypes.
Recent studies suggest the tumor microenvironment (TME) plays
pivotal roles in lung cancer progression and is considered as a
prognostic biomarker (2).

Tumor-associated macrophages (TAM) are the most abundant
stromal cell populations in TME and two discrete activation states
of macrophages based on their immune responses were identified.
TAMs that inhibit angiogenesis and activate antitumoral immu-
nity are defined as M1 TAMs, and those that facilitate tumor
growth, invasion, and metastasis are defined as protumoral M2
TAMs (2). We reported TAM infiltration correlated with lung
tumor stage and metastasis (3). Importantly, macrophage deple-
tion via clodronate liposomes or employing transgenic macro-
phage Fas-induced apoptosis in mice inhibited lung tumor growth
and metastasis (4). These studies demonstrate the central role of
TAMs in lung cancer growth and metastasis. However, a deeper
understanding of the heterogeneity and topography of TAM
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macrophage function in cancer. In lung cancer, density and topol-
ogy of distinct TAMphenotypes at the tumor center (TC) versus the
invasive margin (IM) are largely unknown. Here, we investigated
TAM subtype density and distribution between TC and IM in
human lung cancer and TAM associations with overall survival.
Macrophages isolated from adjacent nontumor tissue (NM), the TC
(TC-TAM), and the IM (IM-TAM) were analyzed with RNA-
sequencing (RNA-seq). Lung tumor tissue microarrays from 104
patient samples were constructed. M1 and M2 TAMs were
identified using multiplex immunofluorescence staining and a
tumor cell-TAM proximity analysis was performed. RNA-seq
identifiedmarked differences amongNM, TC-TAM, and IM-TAM.
On the basis of a panel of five selected markers (CD68, IL12, CCR7,
CD163, and ALOX15), M2 predominance over M1 and M2
proximity to tumor cells was observed, especially at IM. Tumor
cell proximity to TAM was linked with tumor cell survival and
hypoxia was associated with accumulation of M2 TAM. Notably,
lower density of M1 TC-TAM and higher proximity of tumor cells
to M2 IM-TAM or lower proximity to M1 IM-TAM were linked
with poor survival. In addition, three novel molecules (UBXN4,

MFSD12, and ACTR6) from RNA-seq served as potential prog-
nostic markers for lung cancer, and M2 predominance and juxta-
position of M2 TAM near tumor cells were associated with poor
survival. Together, our results reveal the marked heterogeneity of
TAM populations in different tumor regions, with M2 TAM
predominance, particularly at IM.

Significance: This study underlines the significance of the
density, spatial distribution, and gene expression of TAM pheno-
types as prognostic factors for overall survival in lung cancer.
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Multiplex staining demonstrates that spatial density and distribution of TAMs are independent predictors of lung cancer survival.
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Introduction
Despite advances in understanding the molecular mechanisms, and

improvements in diagnostics and treatment, lung cancer remains the
leading cause of cancer-relatedmorbidity andmortalityworldwide (1).
Lung cancer is classified into small-cell and non–small cell lung
carcinoma (NSCLC) in which adenocarcinoma, squamous cell carci-
noma, and large-cell carcinoma are the major histologic subtypes.
Recent studies suggest the tumor microenvironment (TME) plays
pivotal roles in lung cancer progression and is considered as a
prognostic biomarker (2).

Tumor-associated macrophages (TAM) are the most abundant
stromal cell populations in TME and two discrete activation states
of macrophages based on their immune responses were identified.
TAMs that inhibit angiogenesis and activate antitumoral immu-
nity are defined as M1 TAMs, and those that facilitate tumor
growth, invasion, and metastasis are defined as protumoral M2
TAMs (2). We reported TAM infiltration correlated with lung
tumor stage and metastasis (3). Importantly, macrophage deple-
tion via clodronate liposomes or employing transgenic macro-
phage Fas-induced apoptosis in mice inhibited lung tumor growth
and metastasis (4). These studies demonstrate the central role of
TAMs in lung cancer growth and metastasis. However, a deeper
understanding of the heterogeneity and topography of TAM
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ABSTRACT
◥

The respective antitumoral and protumoral roles of M1 and M2
tumor-associated macrophages (TAM) typify the complexity of
macrophage function in cancer. In lung cancer, density and topol-
ogy of distinct TAMphenotypes at the tumor center (TC) versus the
invasive margin (IM) are largely unknown. Here, we investigated
TAM subtype density and distribution between TC and IM in
human lung cancer and TAM associations with overall survival.
Macrophages isolated from adjacent nontumor tissue (NM), the TC
(TC-TAM), and the IM (IM-TAM) were analyzed with RNA-
sequencing (RNA-seq). Lung tumor tissue microarrays from 104
patient samples were constructed. M1 and M2 TAMs were
identified using multiplex immunofluorescence staining and a
tumor cell-TAM proximity analysis was performed. RNA-seq
identifiedmarked differences amongNM, TC-TAM, and IM-TAM.
On the basis of a panel of five selected markers (CD68, IL12, CCR7,
CD163, and ALOX15), M2 predominance over M1 and M2
proximity to tumor cells was observed, especially at IM. Tumor
cell proximity to TAM was linked with tumor cell survival and
hypoxia was associated with accumulation of M2 TAM. Notably,
lower density of M1 TC-TAM and higher proximity of tumor cells
to M2 IM-TAM or lower proximity to M1 IM-TAM were linked
with poor survival. In addition, three novel molecules (UBXN4,

MFSD12, and ACTR6) from RNA-seq served as potential prog-
nostic markers for lung cancer, and M2 predominance and juxta-
position of M2 TAM near tumor cells were associated with poor
survival. Together, our results reveal the marked heterogeneity of
TAM populations in different tumor regions, with M2 TAM
predominance, particularly at IM.

Significance: This study underlines the significance of the
density, spatial distribution, and gene expression of TAM pheno-
types as prognostic factors for overall survival in lung cancer.

Graphical Abstract: http://cancerres.aacrjournals.org/content/
canres/80/20/4414/F1.large.jpg.

Multiplex staining demonstrates that spatial density and distribution of TAMs are independent predictors of lung cancer survival.
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Introduction
Despite advances in understanding the molecular mechanisms, and

improvements in diagnostics and treatment, lung cancer remains the
leading cause of cancer-relatedmorbidity andmortalityworldwide (1).
Lung cancer is classified into small-cell and non–small cell lung
carcinoma (NSCLC) in which adenocarcinoma, squamous cell carci-
noma, and large-cell carcinoma are the major histologic subtypes.
Recent studies suggest the tumor microenvironment (TME) plays
pivotal roles in lung cancer progression and is considered as a
prognostic biomarker (2).

Tumor-associated macrophages (TAM) are the most abundant
stromal cell populations in TME and two discrete activation states
of macrophages based on their immune responses were identified.
TAMs that inhibit angiogenesis and activate antitumoral immu-
nity are defined as M1 TAMs, and those that facilitate tumor
growth, invasion, and metastasis are defined as protumoral M2
TAMs (2). We reported TAM infiltration correlated with lung
tumor stage and metastasis (3). Importantly, macrophage deple-
tion via clodronate liposomes or employing transgenic macro-
phage Fas-induced apoptosis in mice inhibited lung tumor growth
and metastasis (4). These studies demonstrate the central role of
TAMs in lung cancer growth and metastasis. However, a deeper
understanding of the heterogeneity and topography of TAM
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(TC-TAM), and the IM (IM-TAM) were analyzed with RNA-
sequencing (RNA-seq). Lung tumor tissue microarrays from 104
patient samples were constructed. M1 and M2 TAMs were
identified using multiplex immunofluorescence staining and a
tumor cell-TAM proximity analysis was performed. RNA-seq
identifiedmarked differences amongNM, TC-TAM, and IM-TAM.
On the basis of a panel of five selected markers (CD68, IL12, CCR7,
CD163, and ALOX15), M2 predominance over M1 and M2
proximity to tumor cells was observed, especially at IM. Tumor
cell proximity to TAM was linked with tumor cell survival and
hypoxia was associated with accumulation of M2 TAM. Notably,
lower density of M1 TC-TAM and higher proximity of tumor cells
to M2 IM-TAM or lower proximity to M1 IM-TAM were linked
with poor survival. In addition, three novel molecules (UBXN4,

MFSD12, and ACTR6) from RNA-seq served as potential prog-
nostic markers for lung cancer, and M2 predominance and juxta-
position of M2 TAM near tumor cells were associated with poor
survival. Together, our results reveal the marked heterogeneity of
TAM populations in different tumor regions, with M2 TAM
predominance, particularly at IM.

Significance: This study underlines the significance of the
density, spatial distribution, and gene expression of TAM pheno-
types as prognostic factors for overall survival in lung cancer.
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Multiplex staining demonstrates that spatial density and distribution of TAMs are independent predictors of lung cancer survival.
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Introduction
Despite advances in understanding the molecular mechanisms, and

improvements in diagnostics and treatment, lung cancer remains the
leading cause of cancer-relatedmorbidity andmortalityworldwide (1).
Lung cancer is classified into small-cell and non–small cell lung
carcinoma (NSCLC) in which adenocarcinoma, squamous cell carci-
noma, and large-cell carcinoma are the major histologic subtypes.
Recent studies suggest the tumor microenvironment (TME) plays
pivotal roles in lung cancer progression and is considered as a
prognostic biomarker (2).

Tumor-associated macrophages (TAM) are the most abundant
stromal cell populations in TME and two discrete activation states
of macrophages based on their immune responses were identified.
TAMs that inhibit angiogenesis and activate antitumoral immu-
nity are defined as M1 TAMs, and those that facilitate tumor
growth, invasion, and metastasis are defined as protumoral M2
TAMs (2). We reported TAM infiltration correlated with lung
tumor stage and metastasis (3). Importantly, macrophage deple-
tion via clodronate liposomes or employing transgenic macro-
phage Fas-induced apoptosis in mice inhibited lung tumor growth
and metastasis (4). These studies demonstrate the central role of
TAMs in lung cancer growth and metastasis. However, a deeper
understanding of the heterogeneity and topography of TAM
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Cancer invasion of the surrounding tissue is a multiscale process of collective cell

movement that involves not only tumour cells but also other immune cells in the

environment, such as the tumour-associated macrophages (TAMs). The heterogeneity of

these immune cells, with the two extremes being the pro-inflammatory and anti-tumour

M1 cells, and the anti-inflammatory and pro-tumour M2 cells, has a significant impact on

cancer invasion as these cells interact in different ways with the tumour cells and with the

ExtraCellular Matrix (ECM). Experimental studies have shown that cancer cells co-migrate

with TAMs, but the impact of these different TAM sub-populations (which can change

their phenotype and re-polarise depending on themicroenvironment) on this co-migration

is not fully understood. In this study, we extend a previous multi-scale moving boundary

mathematical model, by introducing the M1-like macrophages alongside with their

exerted multi-scale effects on the tumour invasion process. With the help of this model

we investigate numerically the impact of re-polarising the M2 TAMs into the anti-tumoral

M1 phenotype and how such a strategy affects the overall tumour progression. In

particular, we investigate numerically whether the M2→M1 re-polarisation could depend

on time and/or space, and what would be the macroscopic effects of this spatial- and

temporal-dependent re-polarisation on tumour invasion.

Keywords: collective cancer cell movement, cancer invasion, macrophages, macrophage re-polarisation, multi-

scale modelling, cell adhesions, WENO schemes, convolution

1. INTRODUCTION

The last few decades have seen a shift in the focus of cancer research: from a research that was
focused on individual tumour cells to a research that is now focused on collective cancer cells
movement within the tumour microenvironment (TME) and the complex interactions between
tumour cells and other types of cells inside the TME [1]. These processes are key for each of the
stages of tumour progression, from the early development of the avascular tumour and its local
invasion to angiogenesis and subsequent metastasis stages [2, 3].

The TME is formed of tumour’s vasculature, connective tissue, infiltrating immune cells and
the extracellular matrix (ECM). In recent years the ECM has received considerable attention due
to its role in cancer evolution and response to therapies [1]. The ECM is a complex network of
macromolecules (such as fibrous proteins, water and minerals), which is an essential part of any
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respectively. In Equation (9), µM is the positive baseline
proliferation rate while the term (1−ρ(u))+ : = max(0, 1−ρ(u))
ensures that there is no overcrowding.

Experimental studies have shown that macrophages’ death can
be induced by nutritional starvation [44]. Thus, for both M1
and M2 TAMs, we consider a natural death rate dM > 0 that
is regulated by the available nutrients through the death effect-
function "dM(σ ) introduced in Equation (6b), and so the death
terms for each of the two phenotypes are defined by

QM1 (u) := dM"dM(σ )M1, QM2 (u) := dM"dM(σ )M2,
(10)

for the M1 and M2 TAMs populations, respectively.
Due to the versatility of the macrophages, their phenotype can

be switched from one to another [53, 54]. In the present work,
we focus on two factors that drive the polarisation of M1 TAMs
into M2 TAMs, which are detailed as follows. On the one hand,
cytokines secreted by the cancer cells were shown [55, 56] to
trigger the polarisation process. On the other hand, the nutrient
level was also shown [46] to affect this process. As a consequence,
we describe the polarisation of M1 TAMs to M2 TAMs by

T12(u) := p12"M(σ )cM1, (11)

where p12 > 0 is a constant proliferation rate, and "M

is the polarisation effect-function defined in Equation (7).
Further, in vitro, it has been demonstrated [57] that the M2-like
macrophages can be re-polarised back into the M1 phenotype
which may be a viable strategy against tumour development.
To that end, we explore here mathematically the possibilities of
the re-polarisation strategy through a re-polarisation term of the
form

T21(u) :=

{
0 if t < tp,

p21M2(χ%p(t,Rp) ∗ ψρ)(x) if t ≥ tp.
(12)

Here, p21 > 0 is the constant re-polarisation rate, tp > 0 is the
activation time andχ

%p(t,Rp)
is the characteristic function of the re-

polarisation domain%p(t,Rp) that is defined in Appendix C and
illustrated in Figure 2. This re-polarisation term Equation (12)
allows us to examine whether or not we would need to account
for spatio-temporal dependencies through the domain %p(t,Rp)
and activation times tp > 0 in order to obtain an effective
re-polarisation strategy.

The motility of both macrophages phenotypes is driven both
by random and directed movement. Based on recent biological
evidence [49], increased stiffness of the substrate leads to an
increase in macrophages’ speed, aspect explored in our modelling
through a diffusion enhancement that corresponds to with the
level of ECM fibres. To that end, we consider a stiffness-
dependent macrophage diffusion coefficient DM(u) of the form

DM(u) := DM(1+ DMFF), (13)

where DM > 0 is the baseline macrophage diffusion rate,
and DMF > 0 is the diffusion enhancement rate due to the
presence of fibres. On the other hand, besides randommovement,

FIGURE 2 | Schematic of the re-polarisation domain %p(t,Rp) that is

highlighted with red.

macrophages also exercise directed migration due to a both
adhesive interactions with the surrounding cells and the ECM
as well as an underlying cross-talk between themselves and
the cancer cells. A similar “non-local flux term" to the one
introduced in Suveges et al. [30] is used here to explore the
complex interactions of the cells distributed at x ∈ %(t0) with
other cells within a sensing region B(0,R), and this accounts
for: (1) cell-cell TAMs self-adhesion [58]; (2) nutrients level
mediated movement [59]; and (3) the contribution of the cancer
cells to the directional movement of the macrophages [60–63].
Specifically, the contribution of the cancer cells to the directional
movement of themacrophages account not only for the biological
evidence that cancer cells can bind themselves to TAMs [60]
but also for the fact that cancer cells can attract TAMs [61–63]
by secreting various chemokines. Although we neither model
explicitly the involved chemokine activities within this cross-talk
nor the chemo-attractant activities involved with the nutrients,
here we appropriately account for both of them through the
following non-local flux term:

AM(x,t,u,SMM):=
1
R

∫

B(0,R)

K(y)n(y)
[
SMσ

(
1−σ (x+y, t)

)
+SMcc(x+y, t)

+ SMM
(
M1(x+y, t)+M2(x+y, t)

)] [
1−ρ(u)

]+,

where R represents the radius of the sensing region B(0,R).
Further, SMc > 0 is the combined strength of the macrophage-
cancer adhesion, and SMσ > 0 denotes strength of the
macrophage-nutrient relationship, with both SMc and SMσ
being assumed to maintain their individual values unchanged
when considering the cases of M1 and M2 TAMs populations.
Furthermore, SMM denotes the self-adhesion strength that differs
for M1 and M2 TAMs [58], i.e.,

• for M1 TAMs SMM = SM1M > 0, and
• for M2 TAMs SMM = SM2M > 0,

with SM1M %= SM2M . Finally, to account in Equation (14) for the
gradual weakening of these different adhesions as we move away
from the centre x within B(x,R), we use a radially symmetric
kernel K(·) that is given by

K(y) = ψ
( y

R

)
, ∀y ∈ B(0,R),
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FIGURE 3 | Illustration of how the orientation of the fibres θf (·, ·) biases the cell-fibre adhesion.

of extracellular Ca+2 ions (which form one of the constituents
of the non-fibre ECM phase) are necessary for cell-cell adhesion
[93, 94], proceeding as in Shuttleworth and Trucu [29, 41, 42],
and Suveges et al. [30] the cancer cells self-adhesion coefficient
Scc is taken here as

Scc(x, t) := Smin + (Smax − Smin) exp
[
1−

1
1− (1− l(x, t))2

]
,

where Smax > 0 and Smin > 0 correspond to maximum and
minimum levels of Ca+2 ions. Therefore, Scc smoothly increases
from a minimal to a maximum value in order to fully explore the
varying strengths of cell-cell adhesion.

Thus, using Equations (16)–(19) the spatio-temporal
dynamics of the cancer population c(x, t) is expressed as

∂c

∂t
=∇ · [Dc(u)∇c− cAc(x, t, u, θf )]+ Pc(u)− Qc(u). (21)

2.1.4. Two-Phase ECM Macro-Scale Dynamics
Besides the cancer cells, both macrophage phenotypes contribute
to the degradation of the ECM by secreting proteolytic enzymes
[95–99] (e.g., various classes of matrix metalloproteinases). To
that end, we extend the dynamics of the fibre, and non-fibre
ECM components used in Suveges et al. [30] by incorporating the
effects of the M1 phenotype. Thus, the dynamics of the non-fibre
l(x, t) as well as the fibre ECM F(x, t) are formalised as

∂ l

∂t
=− l(βlcc+ βlM1M1 + βlM2M2)+ (γ0 + γM2M2)(1− ρ(u))+,

(22a)

∂F

∂t
=− F(βFcc+ βFM1M1 + βFM2M2), (22b)

where βlc, βlM1 , βlM2 are the positive degradation rates of
the non-fibre ECM phase due to the cancer cells, M1 and M2
TAMs, respectively. Similarly, βFc, βFM1 , βFM2 are all positive
and describe the degradation rates of the fibre component of the
ECM due to the cancer cells, M1 and M2 TAMs, respectively.
Finally, in Equation (22) γ0 > 0 represents the constant rate of

remodelling and γM2 > 0 is the remodelling enhancement rate
induced by the M2 TAM population [85, 96, 100].

2.1.5. The Full Macro-Scale Dynamics
In summary, using Equations (3), (15), (21), and (22) the non-
dimensional macro-scale dynamics is given by the following
coupled PDEs

∂c

∂t
=∇·[Dc(u)∇c−cAc(x,t,u, θf )]+Pc(u)−Qc(u), (23a)

∂M1

∂t
=∇·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

− T12(u)+T21(u)+MI , (23b)

∂M2

∂t
=∇·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u)

+ T12(u)−T21(u), (23c)

∂ l

∂t
=− l(βlcc+βlM1M1+βlM2M2)+(γ0+γM2M2)(1−ρ(u)),

(23d)

∂F

∂t
=− F(βFcc+βFM1M1+βFM2M2), (23e)

0 =Dσ'σ − dσ (c+M1+M2), (23f)

in the presence of appropriate initial conditions (such as those
specified in Equation (51)) with zero-flux boundary conditions
for c, M1, M2, l and F, as well as Dirichlet boundary condition
(Equation 3) for the nutrients σ .

2.2. Processes on the Micro-Scales and
Links Between the Scales
As the process of cancer invasion is truly a multi-scale
phenomena [2], the macro-scale dynamics is tightly linked
together with several micro-scale processes. Among the micro-
scale processes of important for cancer invasion, of main interest
for us in this work are the micro-scale rearrangement of ECM
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M
ac

ro
sc

al
e 

m
od

el

Suveges et al. Macrophages Re-polarisation Within Cancer Invasion

FIGURE 4 | Typical examples of the relevant vectors xdir (z): = z − x, r(δY (x), t) and νδY (x) (z, t), allowing the redistribution of each micro-point (z, t).

FIGURE 5 | Schematics of the four links between the macro and both micro-scales as well as how they are linked together.

Therefore, considering the tumour evolution over a time
perspective [t0, t0+#t], for an arbitrary instance t0 ∈ [0,T], and
of appropriate micro-scale range #t > 0, on any of the micro-
domains εY ∈ P(t0) we denote by m(y, τ ) the spatio-temporal
distribution of MDEs at micro-scale point (y, τ ) ∈ εY × [0,#t].
In this context, at any spatio-temporal (y, τ ) ∈ (εY ∩ &(t0)) ×
[0,#t], a source of MDEs arises as a collective contribution of
the cancer cell and both macrophage populations from the outer
proliferating rim of the tumour that are situated within a distance
γh> 0 from y ∈ εY . Hence, denoting this micro-scale MDE
source by h(y, τ ), this can be formalised mathematically via the
non-local expression

h(y, τ ) =





∫

B(y,γh)∩&(t0)
h((x, τ ) dx

λ(B(y, γh) ∩&(t0))
y ∈ εY ∩&(t0),

0 y /∈ εY \ (&(t0)+ {z ∈ Y | ‖z‖2 < ρ}),

(26)

where B(y, γh) : = {z ∈ Y| ‖ y − z ‖∞≤ γh} denotes the ‖ · ‖∞
ball with appropriately chosen radius γh > 0 and 0 < ρ < γh is a
small mollification range which smooths out the source function
h(·, ·). Further, in Equation (26) h( is given by

h((x, τ ) := αcc(x, t0+τ )+αM1M1(x, t0+τ )+αM2M2(x, t0+τ ),

where αc > 0, αM1 > 0 and αM2 > 0 are constant secretion rates
of the MDEs by the cancer cells, M1 and M2 TAMs respectively.
As the MDE micro-source is naturally induced by the macro-
scale, this establishes a MDE top-down link between the tumour
macro-dynamics and MDE-micro-dynamics occurring at the
tumour interface. Finally, under the presence of the MDE source
h(·, ·), the MDE micro-dynamics is given by

∂m

∂τ
= Dm#m+ h(y, τ ),

m(y, 0) = 0,

∂m

∂n
= 0,

(27)
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where ψ(·) is the standard mollifier. Moreover, in Equation (14),
[1 − ρ(u)

]+ ensures that overcrowded tumour regions do not
contribute to macrophage migration and n(·) is the unit radial
vector given by

n(y) :=






y

‖ y ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0.
(14)

Thus, aggregating now all these cell movement aspects explored
in Equations (8)–(14), the dynamics of the two distinct
macrophages phenotypes are mathematically formulated as

∂M1

∂t
=∇ ·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

−T12(u)+T21(u)+MI , (15a)

∂M2

∂t
=∇ ·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u),

+T12(u)−T21(u), (15b)

where SM1M > 0 and SM2M > 0 are the self-adhesion strengths
of M1 and M2 TAMs, respectively.

2.1.3. Dynamics of the Cancer Cell Population
The third cell population that we consider at macro-scale
is the cancer cell population. Crucially important for cancer
development and invasion, the cancer cell proliferation is a
complex process that is regulated by several processes involving
nutrients and macrophages. From the modelling perspective,
while we consider the proliferation process as being of logistic
type [64–66], we explore the influence of nutrients and
macrophages as follows. On the one hand, similar to both TAMs
populations, we consider the proliferation effect-function $p(σ )
defined in Equation (4) to explore the influence of the available
nutrients on the rate of cancer cell proliferation. On the other
hand, biological evidence shows that while M2 TAMs promote
cancer cell proliferation [67], M1 TAMs inhibits this [68]. Thus,
expanding here the proliferation law introduced in Suveges et al.
[30] by accounting for the negative effect of M1 TAMs, we obtain
leading to the following proliferation law:

Pc(u) := µc$p(σ )(1− µcM1M1 + µcM2M2)c(1− ρ(u))+, (16)

where µc > 0 is a baseline proliferation rate that is being
regulated by the available nutrients, being enhanced by the M2
TAMs at a rate µcM2 > 0 and at the same time weakened by the
presence of the M1 TAMs at a rate µcM1 > 0. Again, here the
term (1− ρ(u))+ ensures that there is no overcrowding.

Besides proliferation, it is well known that cancer cells resist
death [3, 69]. However, due to the peritumoral vasculature as
well as the excessive degradation of the ECM, the efficiency of the
nutrients delivery significantly reduces inside the tumour, leading
to necrosis [70]. In addition, numerous studies have shown [71–
75] that classically activated M1-like macrophages can produce
significant amounts of pro-inflammatory cytokines, and thereby
have the ability to kill cancer cells. To that end, we assume here
a baseline death rate dc > 0 that is regulated not only by the

cancer cell death effect-function $dc(σ ) introduced in Equation
(6a), but also by the M1 TAMs at a rate dcM1 > 0. This results
in the following mathematical representation of the cancer cell
death process, namely

Qc(u) := dc($dc(σ )+ dcM1M1)c. (17)

Similar to the macrophages, for the cancer cell population we
also account for the diffusion enhancement that the spatial
distribution of ECM fibres enables [76–84]. Furthermore, the
random movement of the cell population is also affected by the
presence of both macrophage populations. While in general, the
M2 TAMs were shown to promote cancer cell motility, Afik
et al. [85] recent biological evidence [68, 86] indicates that the
M1 phenotype has a negative effect on the cancer cell motility.
Therefore, the diffusion coefficient for the random movement of
the cancer cells can be formulated mathematically as

Dc(u) := Dc(1+ DcM2M2 + DcFF − DcM1M1). (18)

where Dc > 0 is a baseline diffusion rate, DcF > 0 is the
ECM fibres enhancement coefficient, DcM1 > 0 represents the
weakening effect due to the presence of M1 TAM, and DcM2 > 0
accounts for the positive motility effect due to the presence of
M2 TAM.

Besides random motility, the directed movement of the
cancer cells induced by various adhesion mediated processes
[60, 61, 87–90] is a central player in cancer invasion within the
oriented fibrous environment. To that end, extending here on the
modelling approach proposed in Suveges et al. [30] to include the
interactions of cancer cells with both families of macrophages,
i.e., M1 and M2 TAM, we have that the non-local spatial flux that
drives the directed movement is given in this case as:

Ac(x, t, u, θf ) :=
1
R

∫

B(0,R)

K(y)
[
n(y)

(
Sccc(x+y, t)+Scll(x+y, t)

+ScM(M1(x+y, t)+M2(x+y, t))
)

+n̂(y,θf (x+ y, t))ScFF(x+y, t)
][
1−ρ(u)

]+,
(19)

where R, n(·) and K(·) are the same as in Equation (14). Further,
in Equation (19) n̂(·, ·) is the unit radial vector biased by the
orientation of the fibres, i.e.,

n̂(y, θf (x+ y)) :=






y+ θf (x+ y, t)

‖ y+ θf (x+ y, t) ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0,
(20)

as illustrated in Figure 3. Moreover, in Equation (19) ScM > 0
represents the strength of the adhesion relationship between the
cancer cells and M1 and M2 TAMs, ScF > 0 is the strength of
the cell-fibre ECM adhesion [91] and Scl > 0 corresponds to
strength of adhesion between the cancer cells and the non-fibre
ECM phase (that includes for instance amyloid fibrils, which can
support cell-adhesion processes [92]). Furthrmore,as high level
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FIGURE 4 | Typical examples of the relevant vectors xdir (z): = z − x, r(δY (x), t) and νδY (x) (z, t), allowing the redistribution of each micro-point (z, t).

FIGURE 5 | Schematics of the four links between the macro and both micro-scales as well as how they are linked together.

Therefore, considering the tumour evolution over a time
perspective [t0, t0+#t], for an arbitrary instance t0 ∈ [0,T], and
of appropriate micro-scale range #t > 0, on any of the micro-
domains εY ∈ P(t0) we denote by m(y, τ ) the spatio-temporal
distribution of MDEs at micro-scale point (y, τ ) ∈ εY × [0,#t].
In this context, at any spatio-temporal (y, τ ) ∈ (εY ∩ &(t0)) ×
[0,#t], a source of MDEs arises as a collective contribution of
the cancer cell and both macrophage populations from the outer
proliferating rim of the tumour that are situated within a distance
γh> 0 from y ∈ εY . Hence, denoting this micro-scale MDE
source by h(y, τ ), this can be formalised mathematically via the
non-local expression

h(y, τ ) =





∫

B(y,γh)∩&(t0)
h((x, τ ) dx

λ(B(y, γh) ∩&(t0))
y ∈ εY ∩&(t0),

0 y /∈ εY \ (&(t0)+ {z ∈ Y | ‖z‖2 < ρ}),

(26)

where B(y, γh) : = {z ∈ Y| ‖ y − z ‖∞≤ γh} denotes the ‖ · ‖∞
ball with appropriately chosen radius γh > 0 and 0 < ρ < γh is a
small mollification range which smooths out the source function
h(·, ·). Further, in Equation (26) h( is given by

h((x, τ ) := αcc(x, t0+τ )+αM1M1(x, t0+τ )+αM2M2(x, t0+τ ),

where αc > 0, αM1 > 0 and αM2 > 0 are constant secretion rates
of the MDEs by the cancer cells, M1 and M2 TAMs respectively.
As the MDE micro-source is naturally induced by the macro-
scale, this establishes a MDE top-down link between the tumour
macro-dynamics and MDE-micro-dynamics occurring at the
tumour interface. Finally, under the presence of the MDE source
h(·, ·), the MDE micro-dynamics is given by

∂m

∂τ
= Dm#m+ h(y, τ ),

m(y, 0) = 0,

∂m

∂n
= 0,

(27)
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Therefore, considering the tumour evolution over a time
perspective [t0, t0+#t], for an arbitrary instance t0 ∈ [0,T], and
of appropriate micro-scale range #t > 0, on any of the micro-
domains εY ∈ P(t0) we denote by m(y, τ ) the spatio-temporal
distribution of MDEs at micro-scale point (y, τ ) ∈ εY × [0,#t].
In this context, at any spatio-temporal (y, τ ) ∈ (εY ∩ &(t0)) ×
[0,#t], a source of MDEs arises as a collective contribution of
the cancer cell and both macrophage populations from the outer
proliferating rim of the tumour that are situated within a distance
γh> 0 from y ∈ εY . Hence, denoting this micro-scale MDE
source by h(y, τ ), this can be formalised mathematically via the
non-local expression

h(y, τ ) =


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∫

B(y,γh)∩&(t0)
h((x, τ ) dx

λ(B(y, γh) ∩&(t0))
y ∈ εY ∩&(t0),

0 y /∈ εY \ (&(t0)+ {z ∈ Y | ‖z‖2 < ρ}),

(26)

where B(y, γh) : = {z ∈ Y| ‖ y − z ‖∞≤ γh} denotes the ‖ · ‖∞
ball with appropriately chosen radius γh > 0 and 0 < ρ < γh is a
small mollification range which smooths out the source function
h(·, ·). Further, in Equation (26) h( is given by

h((x, τ ) := αcc(x, t0+τ )+αM1M1(x, t0+τ )+αM2M2(x, t0+τ ),

where αc > 0, αM1 > 0 and αM2 > 0 are constant secretion rates
of the MDEs by the cancer cells, M1 and M2 TAMs respectively.
As the MDE micro-source is naturally induced by the macro-
scale, this establishes a MDE top-down link between the tumour
macro-dynamics and MDE-micro-dynamics occurring at the
tumour interface. Finally, under the presence of the MDE source
h(·, ·), the MDE micro-dynamics is given by

∂m

∂τ
= Dm#m+ h(y, τ ),

m(y, 0) = 0,

∂m

∂n
= 0,

(27)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 February 2022 | Volume 7 | Article 799650

Suveges et al. Macrophages Re-polarisation Within Cancer Invasion

FIGURE 4 | Typical examples of the relevant vectors xdir (z): = z − x, r(δY (x), t) and νδY (x) (z, t), allowing the redistribution of each micro-point (z, t).

FIGURE 5 | Schematics of the four links between the macro and both micro-scales as well as how they are linked together.

Therefore, considering the tumour evolution over a time
perspective [t0, t0+#t], for an arbitrary instance t0 ∈ [0,T], and
of appropriate micro-scale range #t > 0, on any of the micro-
domains εY ∈ P(t0) we denote by m(y, τ ) the spatio-temporal
distribution of MDEs at micro-scale point (y, τ ) ∈ εY × [0,#t].
In this context, at any spatio-temporal (y, τ ) ∈ (εY ∩ &(t0)) ×
[0,#t], a source of MDEs arises as a collective contribution of
the cancer cell and both macrophage populations from the outer
proliferating rim of the tumour that are situated within a distance
γh> 0 from y ∈ εY . Hence, denoting this micro-scale MDE
source by h(y, τ ), this can be formalised mathematically via the
non-local expression

h(y, τ ) =


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∫

B(y,γh)∩&(t0)
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λ(B(y, γh) ∩&(t0))
y ∈ εY ∩&(t0),

0 y /∈ εY \ (&(t0)+ {z ∈ Y | ‖z‖2 < ρ}),

(26)

where B(y, γh) : = {z ∈ Y| ‖ y − z ‖∞≤ γh} denotes the ‖ · ‖∞
ball with appropriately chosen radius γh > 0 and 0 < ρ < γh is a
small mollification range which smooths out the source function
h(·, ·). Further, in Equation (26) h( is given by

h((x, τ ) := αcc(x, t0+τ )+αM1M1(x, t0+τ )+αM2M2(x, t0+τ ),

where αc > 0, αM1 > 0 and αM2 > 0 are constant secretion rates
of the MDEs by the cancer cells, M1 and M2 TAMs respectively.
As the MDE micro-source is naturally induced by the macro-
scale, this establishes a MDE top-down link between the tumour
macro-dynamics and MDE-micro-dynamics occurring at the
tumour interface. Finally, under the presence of the MDE source
h(·, ·), the MDE micro-dynamics is given by

∂m

∂τ
= Dm#m+ h(y, τ ),

m(y, 0) = 0,

∂m

∂n
= 0,
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FIGURE 3 | Illustration of how the orientation of the fibres θf (·, ·) biases the cell-fibre adhesion.

of extracellular Ca+2 ions (which form one of the constituents
of the non-fibre ECM phase) are necessary for cell-cell adhesion
[93, 94], proceeding as in Shuttleworth and Trucu [29, 41, 42],
and Suveges et al. [30] the cancer cells self-adhesion coefficient
Scc is taken here as

Scc(x, t) := Smin + (Smax − Smin) exp
[
1−

1
1− (1− l(x, t))2

]
,

where Smax > 0 and Smin > 0 correspond to maximum and
minimum levels of Ca+2 ions. Therefore, Scc smoothly increases
from a minimal to a maximum value in order to fully explore the
varying strengths of cell-cell adhesion.

Thus, using Equations (16)–(19) the spatio-temporal
dynamics of the cancer population c(x, t) is expressed as

∂c

∂t
=∇ · [Dc(u)∇c− cAc(x, t, u, θf )]+ Pc(u)− Qc(u). (21)

2.1.4. Two-Phase ECM Macro-Scale Dynamics
Besides the cancer cells, both macrophage phenotypes contribute
to the degradation of the ECM by secreting proteolytic enzymes
[95–99] (e.g., various classes of matrix metalloproteinases). To
that end, we extend the dynamics of the fibre, and non-fibre
ECM components used in Suveges et al. [30] by incorporating the
effects of the M1 phenotype. Thus, the dynamics of the non-fibre
l(x, t) as well as the fibre ECM F(x, t) are formalised as

∂ l

∂t
=− l(βlcc+ βlM1M1 + βlM2M2)+ (γ0 + γM2M2)(1− ρ(u))+,

(22a)

∂F

∂t
=− F(βFcc+ βFM1M1 + βFM2M2), (22b)

where βlc, βlM1 , βlM2 are the positive degradation rates of
the non-fibre ECM phase due to the cancer cells, M1 and M2
TAMs, respectively. Similarly, βFc, βFM1 , βFM2 are all positive
and describe the degradation rates of the fibre component of the
ECM due to the cancer cells, M1 and M2 TAMs, respectively.
Finally, in Equation (22) γ0 > 0 represents the constant rate of

remodelling and γM2 > 0 is the remodelling enhancement rate
induced by the M2 TAM population [85, 96, 100].

2.1.5. The Full Macro-Scale Dynamics
In summary, using Equations (3), (15), (21), and (22) the non-
dimensional macro-scale dynamics is given by the following
coupled PDEs

∂c

∂t
=∇·[Dc(u)∇c−cAc(x,t,u, θf )]+Pc(u)−Qc(u), (23a)

∂M1

∂t
=∇·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

− T12(u)+T21(u)+MI , (23b)

∂M2

∂t
=∇·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u)

+ T12(u)−T21(u), (23c)

∂ l

∂t
=− l(βlcc+βlM1M1+βlM2M2)+(γ0+γM2M2)(1−ρ(u)),

(23d)

∂F

∂t
=− F(βFcc+βFM1M1+βFM2M2), (23e)

0 =Dσ'σ − dσ (c+M1+M2), (23f)

in the presence of appropriate initial conditions (such as those
specified in Equation (51)) with zero-flux boundary conditions
for c, M1, M2, l and F, as well as Dirichlet boundary condition
(Equation 3) for the nutrients σ .

2.2. Processes on the Micro-Scales and
Links Between the Scales
As the process of cancer invasion is truly a multi-scale
phenomena [2], the macro-scale dynamics is tightly linked
together with several micro-scale processes. Among the micro-
scale processes of important for cancer invasion, of main interest
for us in this work are the micro-scale rearrangement of ECM
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where ψ(·) is the standard mollifier. Moreover, in Equation (14),
[1 − ρ(u)

]+ ensures that overcrowded tumour regions do not
contribute to macrophage migration and n(·) is the unit radial
vector given by

n(y) :=






y

‖ y ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0.
(14)

Thus, aggregating now all these cell movement aspects explored
in Equations (8)–(14), the dynamics of the two distinct
macrophages phenotypes are mathematically formulated as

∂M1

∂t
=∇ ·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

−T12(u)+T21(u)+MI , (15a)

∂M2

∂t
=∇ ·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u),

+T12(u)−T21(u), (15b)

where SM1M > 0 and SM2M > 0 are the self-adhesion strengths
of M1 and M2 TAMs, respectively.

2.1.3. Dynamics of the Cancer Cell Population
The third cell population that we consider at macro-scale
is the cancer cell population. Crucially important for cancer
development and invasion, the cancer cell proliferation is a
complex process that is regulated by several processes involving
nutrients and macrophages. From the modelling perspective,
while we consider the proliferation process as being of logistic
type [64–66], we explore the influence of nutrients and
macrophages as follows. On the one hand, similar to both TAMs
populations, we consider the proliferation effect-function $p(σ )
defined in Equation (4) to explore the influence of the available
nutrients on the rate of cancer cell proliferation. On the other
hand, biological evidence shows that while M2 TAMs promote
cancer cell proliferation [67], M1 TAMs inhibits this [68]. Thus,
expanding here the proliferation law introduced in Suveges et al.
[30] by accounting for the negative effect of M1 TAMs, we obtain
leading to the following proliferation law:

Pc(u) := µc$p(σ )(1− µcM1M1 + µcM2M2)c(1− ρ(u))+, (16)

where µc > 0 is a baseline proliferation rate that is being
regulated by the available nutrients, being enhanced by the M2
TAMs at a rate µcM2 > 0 and at the same time weakened by the
presence of the M1 TAMs at a rate µcM1 > 0. Again, here the
term (1− ρ(u))+ ensures that there is no overcrowding.

Besides proliferation, it is well known that cancer cells resist
death [3, 69]. However, due to the peritumoral vasculature as
well as the excessive degradation of the ECM, the efficiency of the
nutrients delivery significantly reduces inside the tumour, leading
to necrosis [70]. In addition, numerous studies have shown [71–
75] that classically activated M1-like macrophages can produce
significant amounts of pro-inflammatory cytokines, and thereby
have the ability to kill cancer cells. To that end, we assume here
a baseline death rate dc > 0 that is regulated not only by the

cancer cell death effect-function $dc(σ ) introduced in Equation
(6a), but also by the M1 TAMs at a rate dcM1 > 0. This results
in the following mathematical representation of the cancer cell
death process, namely

Qc(u) := dc($dc(σ )+ dcM1M1)c. (17)

Similar to the macrophages, for the cancer cell population we
also account for the diffusion enhancement that the spatial
distribution of ECM fibres enables [76–84]. Furthermore, the
random movement of the cell population is also affected by the
presence of both macrophage populations. While in general, the
M2 TAMs were shown to promote cancer cell motility, Afik
et al. [85] recent biological evidence [68, 86] indicates that the
M1 phenotype has a negative effect on the cancer cell motility.
Therefore, the diffusion coefficient for the random movement of
the cancer cells can be formulated mathematically as

Dc(u) := Dc(1+ DcM2M2 + DcFF − DcM1M1). (18)

where Dc > 0 is a baseline diffusion rate, DcF > 0 is the
ECM fibres enhancement coefficient, DcM1 > 0 represents the
weakening effect due to the presence of M1 TAM, and DcM2 > 0
accounts for the positive motility effect due to the presence of
M2 TAM.

Besides random motility, the directed movement of the
cancer cells induced by various adhesion mediated processes
[60, 61, 87–90] is a central player in cancer invasion within the
oriented fibrous environment. To that end, extending here on the
modelling approach proposed in Suveges et al. [30] to include the
interactions of cancer cells with both families of macrophages,
i.e., M1 and M2 TAM, we have that the non-local spatial flux that
drives the directed movement is given in this case as:

Ac(x, t, u, θf ) :=
1
R

∫

B(0,R)

K(y)
[
n(y)

(
Sccc(x+y, t)+Scll(x+y, t)

+ScM(M1(x+y, t)+M2(x+y, t))
)

+n̂(y,θf (x+ y, t))ScFF(x+y, t)
][
1−ρ(u)

]+,
(19)

where R, n(·) and K(·) are the same as in Equation (14). Further,
in Equation (19) n̂(·, ·) is the unit radial vector biased by the
orientation of the fibres, i.e.,

n̂(y, θf (x+ y)) :=






y+ θf (x+ y, t)

‖ y+ θf (x+ y, t) ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0,
(20)

as illustrated in Figure 3. Moreover, in Equation (19) ScM > 0
represents the strength of the adhesion relationship between the
cancer cells and M1 and M2 TAMs, ScF > 0 is the strength of
the cell-fibre ECM adhesion [91] and Scl > 0 corresponds to
strength of adhesion between the cancer cells and the non-fibre
ECM phase (that includes for instance amyloid fibrils, which can
support cell-adhesion processes [92]). Furthrmore,as high level
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K(y) : kernel for the spatial ranges of cell-cell and cell-
matrix interactions
Scc, Scl, ScF… : strength of cell-cell and cell-matrix adhesive 
interactions
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Cancer invasion of the surrounding tissue is a multiscale process of collective cell

movement that involves not only tumour cells but also other immune cells in the

environment, such as the tumour-associated macrophages (TAMs). The heterogeneity of

these immune cells, with the two extremes being the pro-inflammatory and anti-tumour

M1 cells, and the anti-inflammatory and pro-tumour M2 cells, has a significant impact on

cancer invasion as these cells interact in different ways with the tumour cells and with the

ExtraCellular Matrix (ECM). Experimental studies have shown that cancer cells co-migrate

with TAMs, but the impact of these different TAM sub-populations (which can change

their phenotype and re-polarise depending on themicroenvironment) on this co-migration

is not fully understood. In this study, we extend a previous multi-scale moving boundary

mathematical model, by introducing the M1-like macrophages alongside with their

exerted multi-scale effects on the tumour invasion process. With the help of this model

we investigate numerically the impact of re-polarising the M2 TAMs into the anti-tumoral

M1 phenotype and how such a strategy affects the overall tumour progression. In

particular, we investigate numerically whether the M2→M1 re-polarisation could depend

on time and/or space, and what would be the macroscopic effects of this spatial- and

temporal-dependent re-polarisation on tumour invasion.

Keywords: collective cancer cell movement, cancer invasion, macrophages, macrophage re-polarisation, multi-

scale modelling, cell adhesions, WENO schemes, convolution

1. INTRODUCTION

The last few decades have seen a shift in the focus of cancer research: from a research that was
focused on individual tumour cells to a research that is now focused on collective cancer cells
movement within the tumour microenvironment (TME) and the complex interactions between
tumour cells and other types of cells inside the TME [1]. These processes are key for each of the
stages of tumour progression, from the early development of the avascular tumour and its local
invasion to angiogenesis and subsequent metastasis stages [2, 3].

The TME is formed of tumour’s vasculature, connective tissue, infiltrating immune cells and
the extracellular matrix (ECM). In recent years the ECM has received considerable attention due
to its role in cancer evolution and response to therapies [1]. The ECM is a complex network of
macromolecules (such as fibrous proteins, water and minerals), which is an essential part of any
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where ψ(·) is the standard mollifier. Moreover, in Equation (14),
[1 − ρ(u)

]+ ensures that overcrowded tumour regions do not
contribute to macrophage migration and n(·) is the unit radial
vector given by

n(y) :=






y

‖ y ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0.
(14)

Thus, aggregating now all these cell movement aspects explored
in Equations (8)–(14), the dynamics of the two distinct
macrophages phenotypes are mathematically formulated as

∂M1

∂t
=∇ ·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

−T12(u)+T21(u)+MI , (15a)

∂M2

∂t
=∇ ·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u),

+T12(u)−T21(u), (15b)

where SM1M > 0 and SM2M > 0 are the self-adhesion strengths
of M1 and M2 TAMs, respectively.

2.1.3. Dynamics of the Cancer Cell Population
The third cell population that we consider at macro-scale
is the cancer cell population. Crucially important for cancer
development and invasion, the cancer cell proliferation is a
complex process that is regulated by several processes involving
nutrients and macrophages. From the modelling perspective,
while we consider the proliferation process as being of logistic
type [64–66], we explore the influence of nutrients and
macrophages as follows. On the one hand, similar to both TAMs
populations, we consider the proliferation effect-function $p(σ )
defined in Equation (4) to explore the influence of the available
nutrients on the rate of cancer cell proliferation. On the other
hand, biological evidence shows that while M2 TAMs promote
cancer cell proliferation [67], M1 TAMs inhibits this [68]. Thus,
expanding here the proliferation law introduced in Suveges et al.
[30] by accounting for the negative effect of M1 TAMs, we obtain
leading to the following proliferation law:

Pc(u) := µc$p(σ )(1− µcM1M1 + µcM2M2)c(1− ρ(u))+, (16)

where µc > 0 is a baseline proliferation rate that is being
regulated by the available nutrients, being enhanced by the M2
TAMs at a rate µcM2 > 0 and at the same time weakened by the
presence of the M1 TAMs at a rate µcM1 > 0. Again, here the
term (1− ρ(u))+ ensures that there is no overcrowding.

Besides proliferation, it is well known that cancer cells resist
death [3, 69]. However, due to the peritumoral vasculature as
well as the excessive degradation of the ECM, the efficiency of the
nutrients delivery significantly reduces inside the tumour, leading
to necrosis [70]. In addition, numerous studies have shown [71–
75] that classically activated M1-like macrophages can produce
significant amounts of pro-inflammatory cytokines, and thereby
have the ability to kill cancer cells. To that end, we assume here
a baseline death rate dc > 0 that is regulated not only by the

cancer cell death effect-function $dc(σ ) introduced in Equation
(6a), but also by the M1 TAMs at a rate dcM1 > 0. This results
in the following mathematical representation of the cancer cell
death process, namely

Qc(u) := dc($dc(σ )+ dcM1M1)c. (17)

Similar to the macrophages, for the cancer cell population we
also account for the diffusion enhancement that the spatial
distribution of ECM fibres enables [76–84]. Furthermore, the
random movement of the cell population is also affected by the
presence of both macrophage populations. While in general, the
M2 TAMs were shown to promote cancer cell motility, Afik
et al. [85] recent biological evidence [68, 86] indicates that the
M1 phenotype has a negative effect on the cancer cell motility.
Therefore, the diffusion coefficient for the random movement of
the cancer cells can be formulated mathematically as

Dc(u) := Dc(1+ DcM2M2 + DcFF − DcM1M1). (18)

where Dc > 0 is a baseline diffusion rate, DcF > 0 is the
ECM fibres enhancement coefficient, DcM1 > 0 represents the
weakening effect due to the presence of M1 TAM, and DcM2 > 0
accounts for the positive motility effect due to the presence of
M2 TAM.

Besides random motility, the directed movement of the
cancer cells induced by various adhesion mediated processes
[60, 61, 87–90] is a central player in cancer invasion within the
oriented fibrous environment. To that end, extending here on the
modelling approach proposed in Suveges et al. [30] to include the
interactions of cancer cells with both families of macrophages,
i.e., M1 and M2 TAM, we have that the non-local spatial flux that
drives the directed movement is given in this case as:

Ac(x, t, u, θf ) :=
1
R

∫

B(0,R)

K(y)
[
n(y)

(
Sccc(x+y, t)+Scll(x+y, t)

+ScM(M1(x+y, t)+M2(x+y, t))
)

+n̂(y,θf (x+ y, t))ScFF(x+y, t)
][
1−ρ(u)

]+,
(19)

where R, n(·) and K(·) are the same as in Equation (14). Further,
in Equation (19) n̂(·, ·) is the unit radial vector biased by the
orientation of the fibres, i.e.,

n̂(y, θf (x+ y)) :=






y+ θf (x+ y, t)

‖ y+ θf (x+ y, t) ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0,
(20)

as illustrated in Figure 3. Moreover, in Equation (19) ScM > 0
represents the strength of the adhesion relationship between the
cancer cells and M1 and M2 TAMs, ScF > 0 is the strength of
the cell-fibre ECM adhesion [91] and Scl > 0 corresponds to
strength of adhesion between the cancer cells and the non-fibre
ECM phase (that includes for instance amyloid fibrils, which can
support cell-adhesion processes [92]). Furthrmore,as high level
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Abstract: Intercellular communication among cancer cells and their microenvironment is crucial to
disease progression. The mechanisms by which communication occurs between distant cells in a
tumor matrix remain poorly understood. In the last two decades, experimental evidence from di↵erent
groups proved the existence of thin membranous tubes that interconnect cells, named tunneling
nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane
protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling
and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may
play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor
cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the
current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in
cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.

Keywords: tunneling nanotubes (TNTs); tumor microtubes (TMs); cancer cell biology; intercellular
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1. Introduction

Intercellular communication can be occur through di↵erent indirect mechanisms such as secretion
of cytokines and chemokines, microvesicles or exosomes. But it may also occur directly via cell contacts
like gap junctions or synapses [1–8]. These forms of intercellular communication are most e↵ective over
short distances. Over long distances, relevant receptors that can recognize and bind di↵usible factors
are required to e↵ect communication between cells. Tunneling nanotubes (TNT) are another type of
cell communication, as they enable cells to communicate directly with each other over longer distances.
Initially TNTs has been reported in the rat pheochromocytoma cell line PC12 [9]. TNTs are long-range
intercellular cytoplasmic channels for direct cell-to-cell communication that are independent of soluble
factors. Uniquely, these structures allow the rapid exchange of cellular cargos between connected,
non-adjacent cells, including organelles, vesicles, molecules, ions and pathogens [10–16].

Increasingly, these thin membrane tubes are becoming relevant for intercellular communication.
They are implicated in several functions like intercellular communication during early development,
cell migration, stem cell-mediated homeostasis and regeneration. Of note, TNTs may also be used
by infective or pathogenic agents as routes to spread, as has been observed in cases of advancing
neurodegeneration or cancer progression and metastasis [10].

TNTs were found in di↵erent organisms and tissues in multiple cell types such as
macrophages [14,17], neuronal cells [12], endothelial progenitor cells [18], mesenchymal stromal
cells [16,19], mesothelial cells [20,21], dendritic cells and monocytes [22,23], pigment epithelium
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Abstract
In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have 
emerged as a novel mechanism of intercellular communications. Protrusion-based cellular 
interactions allow specific communication between participating cells, and would have a distinct 
spectrum of advantages compared to secretion-diffusion-based intercellular communications. 
Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a 
ubiquitous and prevailing means of communication employed by many cell types. Moreover, 
accumulating evidence indicates that protrusion-based intercellular communications are often 
involved in pathogenesis including cancers and infections. Here we review our current 
understanding of protrusion-based intercellular communications.

Introduction: discovery of thin membrane protrusions for intercellular 
communication.

Multicellular organisms represent a complex community of cells, whose concerted actions 
are essential for the development and maintenance of healthy tissues, organs and individuals. 
Essentially every single action of an individual cell depends on communication with its 
neighbors. The most critical aspect of cellular communication is specificity: who receives 
what kind of message from whom, and when?

Progress in recent years has revealed a new mode of intercellular communication, namely 
via thin membrane protrusions. These protrusions are proposed to provide specificity in 
signaling by allowing the direct physical contact between signaling-sending and -receiving 
cells. These protrusions have been found in different tissues from different organisms, with 
certain distinct functional/structural characteristics, leading to distinct naming such as 
cytonemes, tunneling nanotubes (TNTs), membrane nanotubes and microtubule-based 
nanotubes (MT-nanotubes). Investigators have continued to use distinct terms to describe 
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Thin, long membrane protrusions:
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FIGURE 3 | Illustration of how the orientation of the fibres θf (·, ·) biases the cell-fibre adhesion.

of extracellular Ca+2 ions (which form one of the constituents
of the non-fibre ECM phase) are necessary for cell-cell adhesion
[93, 94], proceeding as in Shuttleworth and Trucu [29, 41, 42],
and Suveges et al. [30] the cancer cells self-adhesion coefficient
Scc is taken here as

Scc(x, t) := Smin + (Smax − Smin) exp
[
1−

1
1− (1− l(x, t))2

]
,

where Smax > 0 and Smin > 0 correspond to maximum and
minimum levels of Ca+2 ions. Therefore, Scc smoothly increases
from a minimal to a maximum value in order to fully explore the
varying strengths of cell-cell adhesion.

Thus, using Equations (16)–(19) the spatio-temporal
dynamics of the cancer population c(x, t) is expressed as

∂c

∂t
=∇ · [Dc(u)∇c− cAc(x, t, u, θf )]+ Pc(u)− Qc(u). (21)

2.1.4. Two-Phase ECM Macro-Scale Dynamics
Besides the cancer cells, both macrophage phenotypes contribute
to the degradation of the ECM by secreting proteolytic enzymes
[95–99] (e.g., various classes of matrix metalloproteinases). To
that end, we extend the dynamics of the fibre, and non-fibre
ECM components used in Suveges et al. [30] by incorporating the
effects of the M1 phenotype. Thus, the dynamics of the non-fibre
l(x, t) as well as the fibre ECM F(x, t) are formalised as

∂ l

∂t
=− l(βlcc+ βlM1M1 + βlM2M2)+ (γ0 + γM2M2)(1− ρ(u))+,

(22a)

∂F

∂t
=− F(βFcc+ βFM1M1 + βFM2M2), (22b)

where βlc, βlM1 , βlM2 are the positive degradation rates of
the non-fibre ECM phase due to the cancer cells, M1 and M2
TAMs, respectively. Similarly, βFc, βFM1 , βFM2 are all positive
and describe the degradation rates of the fibre component of the
ECM due to the cancer cells, M1 and M2 TAMs, respectively.
Finally, in Equation (22) γ0 > 0 represents the constant rate of

remodelling and γM2 > 0 is the remodelling enhancement rate
induced by the M2 TAM population [85, 96, 100].

2.1.5. The Full Macro-Scale Dynamics
In summary, using Equations (3), (15), (21), and (22) the non-
dimensional macro-scale dynamics is given by the following
coupled PDEs

∂c

∂t
=∇·[Dc(u)∇c−cAc(x,t,u, θf )]+Pc(u)−Qc(u), (23a)

∂M1

∂t
=∇·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

− T12(u)+T21(u)+MI , (23b)

∂M2

∂t
=∇·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u)

+ T12(u)−T21(u), (23c)

∂ l

∂t
=− l(βlcc+βlM1M1+βlM2M2)+(γ0+γM2M2)(1−ρ(u)),

(23d)

∂F

∂t
=− F(βFcc+βFM1M1+βFM2M2), (23e)

0 =Dσ'σ − dσ (c+M1+M2), (23f)

in the presence of appropriate initial conditions (such as those
specified in Equation (51)) with zero-flux boundary conditions
for c, M1, M2, l and F, as well as Dirichlet boundary condition
(Equation 3) for the nutrients σ .

2.2. Processes on the Micro-Scales and
Links Between the Scales
As the process of cancer invasion is truly a multi-scale
phenomena [2], the macro-scale dynamics is tightly linked
together with several micro-scale processes. Among the micro-
scale processes of important for cancer invasion, of main interest
for us in this work are the micro-scale rearrangement of ECM
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where ψ(·) is the standard mollifier. Moreover, in Equation (14),
[1 − ρ(u)

]+ ensures that overcrowded tumour regions do not
contribute to macrophage migration and n(·) is the unit radial
vector given by

n(y) :=






y

‖ y ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0.
(14)

Thus, aggregating now all these cell movement aspects explored
in Equations (8)–(14), the dynamics of the two distinct
macrophages phenotypes are mathematically formulated as

∂M1

∂t
=∇ ·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

−T12(u)+T21(u)+MI , (15a)

∂M2

∂t
=∇ ·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u),

+T12(u)−T21(u), (15b)

where SM1M > 0 and SM2M > 0 are the self-adhesion strengths
of M1 and M2 TAMs, respectively.

2.1.3. Dynamics of the Cancer Cell Population
The third cell population that we consider at macro-scale
is the cancer cell population. Crucially important for cancer
development and invasion, the cancer cell proliferation is a
complex process that is regulated by several processes involving
nutrients and macrophages. From the modelling perspective,
while we consider the proliferation process as being of logistic
type [64–66], we explore the influence of nutrients and
macrophages as follows. On the one hand, similar to both TAMs
populations, we consider the proliferation effect-function $p(σ )
defined in Equation (4) to explore the influence of the available
nutrients on the rate of cancer cell proliferation. On the other
hand, biological evidence shows that while M2 TAMs promote
cancer cell proliferation [67], M1 TAMs inhibits this [68]. Thus,
expanding here the proliferation law introduced in Suveges et al.
[30] by accounting for the negative effect of M1 TAMs, we obtain
leading to the following proliferation law:

Pc(u) := µc$p(σ )(1− µcM1M1 + µcM2M2)c(1− ρ(u))+, (16)

where µc > 0 is a baseline proliferation rate that is being
regulated by the available nutrients, being enhanced by the M2
TAMs at a rate µcM2 > 0 and at the same time weakened by the
presence of the M1 TAMs at a rate µcM1 > 0. Again, here the
term (1− ρ(u))+ ensures that there is no overcrowding.

Besides proliferation, it is well known that cancer cells resist
death [3, 69]. However, due to the peritumoral vasculature as
well as the excessive degradation of the ECM, the efficiency of the
nutrients delivery significantly reduces inside the tumour, leading
to necrosis [70]. In addition, numerous studies have shown [71–
75] that classically activated M1-like macrophages can produce
significant amounts of pro-inflammatory cytokines, and thereby
have the ability to kill cancer cells. To that end, we assume here
a baseline death rate dc > 0 that is regulated not only by the

cancer cell death effect-function $dc(σ ) introduced in Equation
(6a), but also by the M1 TAMs at a rate dcM1 > 0. This results
in the following mathematical representation of the cancer cell
death process, namely

Qc(u) := dc($dc(σ )+ dcM1M1)c. (17)

Similar to the macrophages, for the cancer cell population we
also account for the diffusion enhancement that the spatial
distribution of ECM fibres enables [76–84]. Furthermore, the
random movement of the cell population is also affected by the
presence of both macrophage populations. While in general, the
M2 TAMs were shown to promote cancer cell motility, Afik
et al. [85] recent biological evidence [68, 86] indicates that the
M1 phenotype has a negative effect on the cancer cell motility.
Therefore, the diffusion coefficient for the random movement of
the cancer cells can be formulated mathematically as

Dc(u) := Dc(1+ DcM2M2 + DcFF − DcM1M1). (18)

where Dc > 0 is a baseline diffusion rate, DcF > 0 is the
ECM fibres enhancement coefficient, DcM1 > 0 represents the
weakening effect due to the presence of M1 TAM, and DcM2 > 0
accounts for the positive motility effect due to the presence of
M2 TAM.

Besides random motility, the directed movement of the
cancer cells induced by various adhesion mediated processes
[60, 61, 87–90] is a central player in cancer invasion within the
oriented fibrous environment. To that end, extending here on the
modelling approach proposed in Suveges et al. [30] to include the
interactions of cancer cells with both families of macrophages,
i.e., M1 and M2 TAM, we have that the non-local spatial flux that
drives the directed movement is given in this case as:

Ac(x, t, u, θf ) :=
1
R

∫

B(0,R)

K(y)
[
n(y)

(
Sccc(x+y, t)+Scll(x+y, t)

+ScM(M1(x+y, t)+M2(x+y, t))
)

+n̂(y,θf (x+ y, t))ScFF(x+y, t)
][
1−ρ(u)

]+,
(19)

where R, n(·) and K(·) are the same as in Equation (14). Further,
in Equation (19) n̂(·, ·) is the unit radial vector biased by the
orientation of the fibres, i.e.,

n̂(y, θf (x+ y)) :=






y+ θf (x+ y, t)

‖ y+ θf (x+ y, t) ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0,
(20)

as illustrated in Figure 3. Moreover, in Equation (19) ScM > 0
represents the strength of the adhesion relationship between the
cancer cells and M1 and M2 TAMs, ScF > 0 is the strength of
the cell-fibre ECM adhesion [91] and Scl > 0 corresponds to
strength of adhesion between the cancer cells and the non-fibre
ECM phase (that includes for instance amyloid fibrils, which can
support cell-adhesion processes [92]). Furthrmore,as high level
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Abstract: Intercellular communication among cancer cells and their microenvironment is crucial to
disease progression. The mechanisms by which communication occurs between distant cells in a
tumor matrix remain poorly understood. In the last two decades, experimental evidence from di↵erent
groups proved the existence of thin membranous tubes that interconnect cells, named tunneling
nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane
protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling
and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may
play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor
cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the
current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in
cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.
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1. Introduction

Intercellular communication can be occur through di↵erent indirect mechanisms such as secretion
of cytokines and chemokines, microvesicles or exosomes. But it may also occur directly via cell contacts
like gap junctions or synapses [1–8]. These forms of intercellular communication are most e↵ective over
short distances. Over long distances, relevant receptors that can recognize and bind di↵usible factors
are required to e↵ect communication between cells. Tunneling nanotubes (TNT) are another type of
cell communication, as they enable cells to communicate directly with each other over longer distances.
Initially TNTs has been reported in the rat pheochromocytoma cell line PC12 [9]. TNTs are long-range
intercellular cytoplasmic channels for direct cell-to-cell communication that are independent of soluble
factors. Uniquely, these structures allow the rapid exchange of cellular cargos between connected,
non-adjacent cells, including organelles, vesicles, molecules, ions and pathogens [10–16].

Increasingly, these thin membrane tubes are becoming relevant for intercellular communication.
They are implicated in several functions like intercellular communication during early development,
cell migration, stem cell-mediated homeostasis and regeneration. Of note, TNTs may also be used
by infective or pathogenic agents as routes to spread, as has been observed in cases of advancing
neurodegeneration or cancer progression and metastasis [10].

TNTs were found in di↵erent organisms and tissues in multiple cell types such as
macrophages [14,17], neuronal cells [12], endothelial progenitor cells [18], mesenchymal stromal
cells [16,19], mesothelial cells [20,21], dendritic cells and monocytes [22,23], pigment epithelium
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understanding of protrusion-based intercellular communications.

Introduction: discovery of thin membrane protrusions for intercellular 
communication.

Multicellular organisms represent a complex community of cells, whose concerted actions 
are essential for the development and maintenance of healthy tissues, organs and individuals. 
Essentially every single action of an individual cell depends on communication with its 
neighbors. The most critical aspect of cellular communication is specificity: who receives 
what kind of message from whom, and when?

Progress in recent years has revealed a new mode of intercellular communication, namely 
via thin membrane protrusions. These protrusions are proposed to provide specificity in 
signaling by allowing the direct physical contact between signaling-sending and -receiving 
cells. These protrusions have been found in different tissues from different organisms, with 
certain distinct functional/structural characteristics, leading to distinct naming such as 
cytonemes, tunneling nanotubes (TNTs), membrane nanotubes and microtubule-based 
nanotubes (MT-nanotubes). Investigators have continued to use distinct terms to describe 
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• Tunneling nanotubes (TNT): up to 100 𝜇𝑚
• Cytonemes: up to 700 𝜇𝑚
• Average cell diameter: 10-40 𝜇𝑚
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Physical forces during collective cell migration
Xavier Trepat1,2*, Michael R. Wasserman1, Thomas E. Angelini3, Emil Millet1, David A. Weitz3,
James P. Butler1,4 and Jeffrey J. Fredberg1*
Fundamental biological processes including morphogenesis,
tissue repair and tumour metastasis require collective cell
motions1–3, and to drive these motions cells exert traction
forces on their surroundings4. Current understanding empha-
sizes that these traction forces arise mainly in ‘leader cells’
at the front edge of the advancing cell sheet5–9. Our data are
contrary to that assumption and show for the first time by
direct measurement that traction forces driving collective cell
migration arise predominately many cell rows behind the lead-
ing front edge and extend across enormous distances. Traction
fluctuations are anomalous, moreover, exhibiting broad non-
Gaussian distributions characterized by exponential tails10–12.
Taken together, these unexpected findings demonstrate that
although the leader cell may have a pivotal role in local
cell guidance, physical forces that it generates are but a
small part of a global tug-of-war involving cells well back
from the leading edge.

The single adherent cell moves by the action of two synchronized
cycles, one involving extension and contraction of its cytoskele-
ton and the other involving formation and detachment of its
adhesions13,14. Although this complex process remains a matter of
intense research14–16, it is now well established that a fundamental
aspect of the motility mechanism is the transmission of contractile
forces to the surrounding matrix at the cell’s leading and trailing
edges17,18. In contrast with the case of migration of the single cell
studied in isolation14–16, the case of collective migration of cells
within a contiguous cell sheet has more physiological relevance
but is substantially less well understood19. Within an advancing
epithelial cell sheet, for example, each individual cell is physically
constrained by its neighbours, and cell–cell signalling through
biochemical and biophysical pathways may influence the collective
motion of the group20,21. Do leader cells at the advancing front
edge of the sheet exert physical forces locally that are transmitted
rearward, from cell-to-cell, and thus act to pull along those cells in
the ranks behind5,6,8,9? Or instead is each individual cell in the sheet
mechanically self-propelled21? Or does cell proliferation expand the
cell colony and thereby push the advancing front forward? Or is
the correct answer none of the above? For more than a century
these fundamental questions have been debated intensively5,22 and,
using a variety ofmethods in vivo23, in vitro4,9,24 and in silico21, much
conflicting evidence has accumulated. This conflicting evidence has
been in most cases indirect or inferential, however, because within
the cell sheet the physical forces themselves have remained largely
inaccessible to direct experimental observation.

Here, we report by direct measurement the first explicit
maps of those physical forces and their distribution. To do
this within an advancing cell sheet, we used Fourier-transform
traction microscopy together with a balance of forces that is

1Program in Molecular and Integrative Physiological Sciences, School of Public Health, Harvard University, Boston, Massachusetts 02115, USA, 2Unitat de
Biofísica i Bioenginyeria, Universitat de Barcelona, Institute for Bioengineering of Catalonia, and Ciber Enfermedades Respiratorias, 08036 Barcelona,
Spain, 3School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA, 4Dept. Medicine, Harvard Medical
School, Boston, Massachusetts 02115, USA. *e-mail: xtrepat@ub.edu; jeffrey_fredberg@hsph.harvard.edu.

demanded by straightforward application of Newton’s laws of
motion (see Supplementary Information S2 and S3). To address
the case of an advancing cell sheet, however, traction microscopy
as described originally18,25 or as modified subsequently26–28 is
inadequate and therefore required fundamental reformulation
(see Supplementary Information S2 and S3). We seeded a small
number of Madin–Darby canine kidney epithelial cells (∼5,000)
at the centre of a soft collagen-coated polyacrylamide gel (Young’s
modulus of 1.3 kPa). The cells adhered readily to this substrate
and within 24 h formed a confluent colony. With time, the colony
expanded radially outward, thus providing a simple model of
collective migration without need of damaging the monolayer
as in classical scratch-wounding experiments (see Supplementary
Information S1). Growth of the colony was largely insensitive
to the stiffness of the underlying substrate (see Supplementary
Information S4). After allowing the colony to expand for at least
72 h, we mapped the traction forces that marginal and submarginal
cells exerted on their underlying matrix.

We first assessed the locus of traction forces in the proximity
of the leading edge (Fig. 1, Supplementary Movie S1). Maps of
tractions normal (T⊥) and parallel (T‖) to the leading edge show
that tractions are not restricted to cells at the leading edge or even
to cells located 2–3 rows behind it, as is commonly emphasized5,6,29.
Instead, large tractions are applied by cells many cell rows behind
the edge. Independent of the distance from the edge, both T⊥
and T‖ exhibited broad non-Gaussian distributions characterized
by exponential tails (Fig. 2a, b). The distribution of T⊥ was
skewed towards positive tractions at the leading edge, whereas
the distribution of T‖ was symmetric. Both traction distributions
narrowed as the distance from the leading edge increased. Taken
together, these data are inconsistent with the existence of two
populations of cells, each with a distinct mechanical phenotype,
one corresponding to active mechanical leaders at the leading
edge and the other to passive mechanical followers. Instead, our
data show a single distribution, the tails of which were roughly
exponential rather than Gaussian, revealing probabilities of high
tractions much larger than would be predicted according to the
central limit theorem for independent and identically distributed
random variables. Exponential distributions have previously been
reported at the level of the single focal adhesion30–32, thereby
indicating that this particular kind of distribution might underlie
tissue behaviour over multiple length scales.

Submarginal cells have previously been shown to extend cryptic
lamellipodia beneath cells in front of them24. Regardless of the
extent to which cryptic lamellipodia are mechanically active and
represent a locus of force generation, traction forces generated by
these submarginal cells are seen to be comparable to those at the
leading edge. Amore important question, however, is whether these
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Figure 1 | Traction forces generated by a collectively migrating cell sheet. a, Phase contrast image. b, Tractions normal to the edge. c, Tractions parallel to
the edge. The field of view is 750 µm×750 µm. T‖ and T⊥ were calculated from Tx and Ty and from the local normal vector to the cell edge (see
Supplementary Methods).
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row was assumed to be 19.2 µm in radial dimension. Data were pooled from n = 4 different cell sheets at four different time points for each well. The tails of
each distribution appear straight in a semilog plot, showing the exponential nature of the distributions. A Gaussian fit to the distribution of parallel
tractions for rows 12–17 is plotted as a reference (dashed grey line). c, The average normal traction decayed slowly with distance from the edge (filled
symbols), whereas the average parallel traction was negligible and independent of the distance from the edge (open symbols). Error bars indicate standard
errors. d, Stress within the cell sheet increased as a function of the distance from the leading edge. Error bars indicate standard errors. e, Schematic
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FIGURE 3 | Illustration of how the orientation of the fibres θf (·, ·) biases the cell-fibre adhesion.

of extracellular Ca+2 ions (which form one of the constituents
of the non-fibre ECM phase) are necessary for cell-cell adhesion
[93, 94], proceeding as in Shuttleworth and Trucu [29, 41, 42],
and Suveges et al. [30] the cancer cells self-adhesion coefficient
Scc is taken here as

Scc(x, t) := Smin + (Smax − Smin) exp
[
1−

1
1− (1− l(x, t))2

]
,

where Smax > 0 and Smin > 0 correspond to maximum and
minimum levels of Ca+2 ions. Therefore, Scc smoothly increases
from a minimal to a maximum value in order to fully explore the
varying strengths of cell-cell adhesion.

Thus, using Equations (16)–(19) the spatio-temporal
dynamics of the cancer population c(x, t) is expressed as

∂c

∂t
=∇ · [Dc(u)∇c− cAc(x, t, u, θf )]+ Pc(u)− Qc(u). (21)

2.1.4. Two-Phase ECM Macro-Scale Dynamics
Besides the cancer cells, both macrophage phenotypes contribute
to the degradation of the ECM by secreting proteolytic enzymes
[95–99] (e.g., various classes of matrix metalloproteinases). To
that end, we extend the dynamics of the fibre, and non-fibre
ECM components used in Suveges et al. [30] by incorporating the
effects of the M1 phenotype. Thus, the dynamics of the non-fibre
l(x, t) as well as the fibre ECM F(x, t) are formalised as

∂ l

∂t
=− l(βlcc+ βlM1M1 + βlM2M2)+ (γ0 + γM2M2)(1− ρ(u))+,

(22a)

∂F

∂t
=− F(βFcc+ βFM1M1 + βFM2M2), (22b)

where βlc, βlM1 , βlM2 are the positive degradation rates of
the non-fibre ECM phase due to the cancer cells, M1 and M2
TAMs, respectively. Similarly, βFc, βFM1 , βFM2 are all positive
and describe the degradation rates of the fibre component of the
ECM due to the cancer cells, M1 and M2 TAMs, respectively.
Finally, in Equation (22) γ0 > 0 represents the constant rate of

remodelling and γM2 > 0 is the remodelling enhancement rate
induced by the M2 TAM population [85, 96, 100].

2.1.5. The Full Macro-Scale Dynamics
In summary, using Equations (3), (15), (21), and (22) the non-
dimensional macro-scale dynamics is given by the following
coupled PDEs

∂c

∂t
=∇·[Dc(u)∇c−cAc(x,t,u, θf )]+Pc(u)−Qc(u), (23a)

∂M1

∂t
=∇·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

− T12(u)+T21(u)+MI , (23b)

∂M2

∂t
=∇·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u)

+ T12(u)−T21(u), (23c)

∂ l

∂t
=− l(βlcc+βlM1M1+βlM2M2)+(γ0+γM2M2)(1−ρ(u)),

(23d)

∂F

∂t
=− F(βFcc+βFM1M1+βFM2M2), (23e)

0 =Dσ'σ − dσ (c+M1+M2), (23f)

in the presence of appropriate initial conditions (such as those
specified in Equation (51)) with zero-flux boundary conditions
for c, M1, M2, l and F, as well as Dirichlet boundary condition
(Equation 3) for the nutrients σ .

2.2. Processes on the Micro-Scales and
Links Between the Scales
As the process of cancer invasion is truly a multi-scale
phenomena [2], the macro-scale dynamics is tightly linked
together with several micro-scale processes. Among the micro-
scale processes of important for cancer invasion, of main interest
for us in this work are the micro-scale rearrangement of ECM
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FIGURE 7 | Baseline simulation with no macrophage re-polarisation (i.e., we set Rp = 0) at final time 50!t. (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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Compared with M1 macrophages, CPD, SERPINB9, WARS, HIVEP1,
PAG1, ERAP2, ACTR6, SPATA2, UBXN4, TMEM189, IQGAP2, SDF4,
AP153, LRRFLP2, TM2D3, STK38, UBR2, IST1, MED16, METAP2,
DBF4, PIHID1, ZNF37A, PUS7L, and SEL61A were significantly
downregulated inM2macrophages, whereasKMT2C, PLOD1, PACS2,

BCL2L1, PAQR4, HAMP, MFSD12, and UBTD1 were significantly
upregulated in M2 macrophages (Supplementary Fig. S4B). After
confirming their expression in M1 and M2 macrophages, we deter-
mined the strength of correlations between each validated gene and
TAM-related markers (CSF1R and CD163), using cBioPortal for

Figure 3.
Spatial density of M1/M2 TAMs in human lung cancer samples and its correlations with survival and clinicopathologic characteristics. A, Representative composite
images of TMA cores for adenocarcinoma (adeno), large-cell carcinoma (LCC), and squamous cell carcinoma (SCC). Pseudocolor illustration of CD68 (cyan),
cytokeratin (green), IL12 (magenta), CCR7 (pink), CD163 (red), ALOX15 (yellow), and DAPI (gray) staining. Scale bar, 100 mm. B, Representative image showing the
segmentation of the parenchyma from the stroma based on cytokeratin staining. Colored areas show the parenchyma, and the color gradient of colors denotes the
edge of the parenchyma (blue) to an infiltration depth of 100 mm (red). Representative phenotypemap (right; enlarged area denoted by the white circle), generated
using HALO software to illustrate M1 TAMs (yellow dots), M2 TAMs (red dots), tumor cells (green dots), and other cell types (gray dots) from subsections of the
segmented tissue. In the phenotype map, a blue line encircles the parenchyma. C and D, Comparisons of the M1 and M2 TAM densities between TC and IM (C) and
between the stroma and parenchyma (D) in segmented tissues. The data are presented as themedian and interquartile ranges, and statistical significance (P <0.017)
was determined with the Kruskal–Wallis test. E and F, Comparisons of the M1 and M2 TAM densities at TC (E) and IM (F) of the TMA cores among the various lung
cancer subtypes. The data are presented as themedian and interquartile ranges, and statistical significance (P <0.010)was determined using the Kruskal–Wallis test.
G,Kaplan–Meier survival analyses ofM1/M2 TAMdensity–related parameters in tissue samples frompatientswith lung cancer. Patientswere divided into the high and
low groups, based on TAM densities above and below the median values, respectively. The calculations were based on all patients who reached the overall survival
endpoint. P values reflect the comparisons between two groups by univariate analysis using the log-rank test.
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Spatial Density and Distribution of Tumor-Associated
Macrophages Predict Survival in Non–Small Cell Lung
Carcinoma
Xiang Zheng1, Andreas Weigert2, Simone Reu3, Stefan Guenther1, Siavash Mansouri1, Birgit Bassaly4,
Stefan Gattenl€ohner4, Friedrich Grimminger5, Soni Savai Pullamsetti1,5, Werner Seeger1,5,6,
Hauke Winter7, and Rajkumar Savai1,5,6,8

ABSTRACT
◥

The respective antitumoral and protumoral roles of M1 and M2
tumor-associated macrophages (TAM) typify the complexity of
macrophage function in cancer. In lung cancer, density and topol-
ogy of distinct TAMphenotypes at the tumor center (TC) versus the
invasive margin (IM) are largely unknown. Here, we investigated
TAM subtype density and distribution between TC and IM in
human lung cancer and TAM associations with overall survival.
Macrophages isolated from adjacent nontumor tissue (NM), the TC
(TC-TAM), and the IM (IM-TAM) were analyzed with RNA-
sequencing (RNA-seq). Lung tumor tissue microarrays from 104
patient samples were constructed. M1 and M2 TAMs were
identified using multiplex immunofluorescence staining and a
tumor cell-TAM proximity analysis was performed. RNA-seq
identifiedmarked differences amongNM, TC-TAM, and IM-TAM.
On the basis of a panel of five selected markers (CD68, IL12, CCR7,
CD163, and ALOX15), M2 predominance over M1 and M2
proximity to tumor cells was observed, especially at IM. Tumor
cell proximity to TAM was linked with tumor cell survival and
hypoxia was associated with accumulation of M2 TAM. Notably,
lower density of M1 TC-TAM and higher proximity of tumor cells
to M2 IM-TAM or lower proximity to M1 IM-TAM were linked
with poor survival. In addition, three novel molecules (UBXN4,

MFSD12, and ACTR6) from RNA-seq served as potential prog-
nostic markers for lung cancer, and M2 predominance and juxta-
position of M2 TAM near tumor cells were associated with poor
survival. Together, our results reveal the marked heterogeneity of
TAM populations in different tumor regions, with M2 TAM
predominance, particularly at IM.

Significance: This study underlines the significance of the
density, spatial distribution, and gene expression of TAM pheno-
types as prognostic factors for overall survival in lung cancer.

Graphical Abstract: http://cancerres.aacrjournals.org/content/
canres/80/20/4414/F1.large.jpg.

Multiplex staining demonstrates that spatial density and distribution of TAMs are independent predictors of lung cancer survival.
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Introduction
Despite advances in understanding the molecular mechanisms, and

improvements in diagnostics and treatment, lung cancer remains the
leading cause of cancer-relatedmorbidity andmortalityworldwide (1).
Lung cancer is classified into small-cell and non–small cell lung
carcinoma (NSCLC) in which adenocarcinoma, squamous cell carci-
noma, and large-cell carcinoma are the major histologic subtypes.
Recent studies suggest the tumor microenvironment (TME) plays
pivotal roles in lung cancer progression and is considered as a
prognostic biomarker (2).

Tumor-associated macrophages (TAM) are the most abundant
stromal cell populations in TME and two discrete activation states
of macrophages based on their immune responses were identified.
TAMs that inhibit angiogenesis and activate antitumoral immu-
nity are defined as M1 TAMs, and those that facilitate tumor
growth, invasion, and metastasis are defined as protumoral M2
TAMs (2). We reported TAM infiltration correlated with lung
tumor stage and metastasis (3). Importantly, macrophage deple-
tion via clodronate liposomes or employing transgenic macro-
phage Fas-induced apoptosis in mice inhibited lung tumor growth
and metastasis (4). These studies demonstrate the central role of
TAMs in lung cancer growth and metastasis. However, a deeper
understanding of the heterogeneity and topography of TAM
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Re-polarisation of Macrophages
Within Collective Tumour Cell
Migration: A Multiscale Moving
Boundary Approach
Szabolcs Suveges1, Raluca Eftimie 2 and Dumitru Trucu1*

1 Department of Mathematics, University of Dundee, Dundee, United Kingdom, 2 Laboratoire Mathématiques de Besançon,

UMR-CNRS 6623, Université de Bourgogne Franche-Comté, Besancon, France

Cancer invasion of the surrounding tissue is a multiscale process of collective cell

movement that involves not only tumour cells but also other immune cells in the

environment, such as the tumour-associated macrophages (TAMs). The heterogeneity of

these immune cells, with the two extremes being the pro-inflammatory and anti-tumour

M1 cells, and the anti-inflammatory and pro-tumour M2 cells, has a significant impact on

cancer invasion as these cells interact in different ways with the tumour cells and with the

ExtraCellular Matrix (ECM). Experimental studies have shown that cancer cells co-migrate

with TAMs, but the impact of these different TAM sub-populations (which can change

their phenotype and re-polarise depending on themicroenvironment) on this co-migration

is not fully understood. In this study, we extend a previous multi-scale moving boundary

mathematical model, by introducing the M1-like macrophages alongside with their

exerted multi-scale effects on the tumour invasion process. With the help of this model

we investigate numerically the impact of re-polarising the M2 TAMs into the anti-tumoral

M1 phenotype and how such a strategy affects the overall tumour progression. In

particular, we investigate numerically whether the M2→M1 re-polarisation could depend

on time and/or space, and what would be the macroscopic effects of this spatial- and

temporal-dependent re-polarisation on tumour invasion.

Keywords: collective cancer cell movement, cancer invasion, macrophages, macrophage re-polarisation, multi-

scale modelling, cell adhesions, WENO schemes, convolution

1. INTRODUCTION

The last few decades have seen a shift in the focus of cancer research: from a research that was
focused on individual tumour cells to a research that is now focused on collective cancer cells
movement within the tumour microenvironment (TME) and the complex interactions between
tumour cells and other types of cells inside the TME [1]. These processes are key for each of the
stages of tumour progression, from the early development of the avascular tumour and its local
invasion to angiogenesis and subsequent metastasis stages [2, 3].

The TME is formed of tumour’s vasculature, connective tissue, infiltrating immune cells and
the extracellular matrix (ECM). In recent years the ECM has received considerable attention due
to its role in cancer evolution and response to therapies [1]. The ECM is a complex network of
macromolecules (such as fibrous proteins, water and minerals), which is an essential part of any

Fig. 1 Identification and characterization of macrophage populations. a Regions of interest (ROIs): adjacent normal tissue (N), margin (M), edge (E), and
core (C). Scale bar: 100 µm. b Representative composite and single-stained IHC images of the multiplex IHC panel. Scale bar: 100 µm. c H&E, single-stained
AE1AE3, and tissue-component segmentation of the same region. Scale bar: 100 µm. d Multiplex IHC panel design: gating strategy for each TAM
population (numbered). e Seven major TAM populations. Positivity (+) of corresponding markers and relative intensity between populations is indicated.
Scale bar: 10 µm. f Marker signatures used for TAM population characterization in patient samples (n= 35). Relative normalized intensity: relative original
intensity of each marker divided by exposure time. g, h 3D plots showing the intensities of TAM populations from (g) single cells (n= ~8.5 × 106 from 56
patients) and (h) averaged per patient (n= 35). Unit of axis: Normalized intensity. Key: Orange: CD68+CD206++, Brown: CD68+CD206+, Green:
CD68+, Yellow: CD68+IRF8+, Dark red: CD68++CD163+, Red: CD68+CD163+, and Purple: CD68+CD163+CD206+. TAM populations are as
numbered in (d) and (e)

Core
Edge

Margin

Core
Edge

Margin
Core

Edge
Margin

Core
Edge

Margin

Core
Edge

Margin
Core

Edge
Margin

Core
Edge

Margin
Core

Edge
Margin

Core
Edge

Margin

0

500

1000

1500

2000

2500

3000

3500

CD68+CD163+CD206+

De
ns

ity
 (c

ell
/m

m2 )
De

ns
ity

 (c
ell

/m
m2 )

De
ns

ity
 (c

ell
/m

m2 )

De
ns

ity
 (c

ell
/m

m2 )

De
ns

ity
 (c

ell
/m

m2 )

De
ns

ity
 (c

ell
/m

m2 )

 

Tumor-nest
Stroma

** *

0

200

400

600

800

1000

1200

CD68+IRF8+

Tumor-nest
Stroma

** **

0

500

1000

1500

2000

2500

CD68+CD206+

Tumor-nest
Stroma

n.s. n.s.

Core
Edge

Margin

Norm
al

0

1

2

3

4

5

M1-like/M2-like

Ra
tio

**

CD68+IRF8+
CD68+

CD68+CD163+

CD68++CD163+

CD68+CD206++

CD68+CD206+

CD68+CD163+CD206+

0

250

500

750

1000

1250

1500

2000

3000
Macrophages in regions of interest

De
ns

ity
 (c

ell
/m

m2 )
 

Core (46)
Edge (30)

Margin (26)

Normal (28)***

***

**

n.s
.

* ***

n.s
.

**

***

0

500

1000

1500

2000

2500

3000

3500
CD68+CD163+CD206+

Tumor-nest
Stroma

***
***

***

0

200

400

600

800

1000

1200
CD68+IRF8+

Tumor-nest
Stroma

***

***

***

0

500

1000

1500

2000

2500
CD68+CD206+

Tumor-nest
Stroma

**
**

*

a

b

c

d

e

Core
Edge

Margin

Norm
al

0

2000

4000

6000

8000

Macrophage

De
ns

ity
 (c

ell
/m

m2 ) 

*
*

Fig. 2 Distinct distribution of TAM population densities across regions of interest. a–c Spatial distribution of TAM populations: a Overall TAM density,
b M1-like to M2-like ratio, and c Density of each TAM population. Core (red circle): n= 46, edge (green triangle): n= 30, margin (blue square): n= 26,
normal (white circle): n= 28. d, e Density of selected TAM populations between the Tumor-nest (dark red square) and Stroma (dark green triangle) areas
(d) among the ROIs and (e) in matched (dash line) patient samples. Box and whiskers represent mean ± 10–90 percentile. Each point represents one
patient. *p < 0.05, **p < 0.01, ***p < 0.001 and not significant (n.s.). Mann–Whitney U test
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Tumor-associated macrophages (TAMs), one of the most abundant immune components in

gastric cancer (GC), are difficult to characterize due to their heterogeneity. Multiple

approaches have been used to elucidate the issue, however, due to the tissue-destructive

nature of most of these methods, the spatial distribution of TAMs in situ remains unclear.

Here we probe the relationship between tumor context and TAM heterogeneity by multiplex

immunohistochemistry of 56 human GC cases. Using distinct expression marker profiles on

TAMs, we report seven predominant populations distributed between tumor and non-tumor

tissue. TAM population-associated gene signatures reflect their heterogeneity and polar-

ization in situ. Increased density of CD163+ (CD206−) TAMs with concurrent high CD68

expression is associated with upregulated immune-signaling and improved patient survival by

univariate, but not multivariate analysis. CD68-only and CD206+ TAMs are correlated with

high PDL1 expression.
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3.4.3. Reconstruction of Unknown Mutation Law Q(c1, v) in case (iii) for a Di↵erent Cell
Proliferation Rule for c2

Throughout the previous sections we assumed that both cancer cell populations proliferate logis-
tically: µcc1,2

⇣
1 c1+c2+v

Kc

⌘
. However, the sigmoid shape of tumour growth that is given by the logis-

tic term can be obtained also with other proliferation rules, such as the Gompertz rule [33, 34, 35]:
µcc1,2 log

⇣
Kc

c1+c2+v

⌘
. This raises the question as to what happens when di↵erent cancer cell populations

use di↵erent proliferation laws.
In this subsection we reconstruct the general mutation law Q(c1, v, t) in case (iii) when we assume

that the primary c1 population proliferation proliferates logistically, while the second (mutated) cell
population c2 proliferates according to Gompertz law. In Figure 5 we present the numerical recon-
struction results. We observe that the results are similar to those in Figure 4; this could be explained
by the fact that the mutation starts in the primary tumour which proliferate logistically.

4. A Tumour Invasion Model with Nonlocal Dynamics

Since various mathematical studies have assumed nonlocal cell-cell and cell-ECM interactions to
explain the invasion of cancer cells [22, 16, 11, 23], in the following we generalise the model (2.1) by
replacing the local haptotaxis towards local ECM gradients with a nonlocal haptotaxis flux generated
by these cell-cell and cell-ECM interactions.

As before, we consider a primary cancer cell subpopulation c1(x, t) and a secondary mutated cancer
cell subpopulation c2(x, t). These cancer cell populations interact with each other as well as with
the extracellular matrix (ECM), v(x, t), which they degrade and remodel. For compact notation, we
consider the combined vector of primary cancer cells c1, mutated cancer cells c2 and extracellular
matrix v defined as

u(x, t) := [c1(x, t), c2(x, t), v(x, t)]T .

We use this vector to describe in a compact manner the flux term generated by the nonlocal cell-cell
and cell-ECM interactions (A1,2(x, t,u·, t)). Therefore the coupled tumour dynamics in this case is
given by:

@c1

@t
= D1�c1| {z }

random motility

�r · [c1A1 (x, t,u (·, t))]|                      {z                      }
adhesion

+ µcc1

 
1 �

c1 + c2 + v

Kc

!

|                      {z                      }
logistic proliferation

� !(t)|{z}
mutation
switch

Q(·, ·)|{z}
unknown
mutation

, (4.1a)

@c2

@t
= D2�c2| {z }

random motility

�r · [c2A2 (x, t,u (·, t))]|                      {z                      }
adhesion

+ µcc2

 
1 �

c1 + c2 + v

Kc

!

|                      {z                      }
logistic proliferation

+ !(t)|{z}
mutation
switch

Q(·, ·)|{z}
unknown
mutation

, (4.1b)

@v

@t
= �⇢(c1 + c2)v|         {z         }

degradation

+ µv (Kc � c1 � c2 � v)+|                     {z                     }
ECM remodelling

. (4.1c)

As before, D1,2 are the di↵usion coe�cients, µc is the cancer cell proliferation rate, ⇢ is the ECM
degradation rate, and µv is the ECM remodelling rate. The flux term Ap (x, t,u (·, t)), p = 1, 2, has
been proposed in [11, 23] to describe the directed movement of cells due to cell-cell and cell-matrix
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Figure 6. Schematic shows the sensing region B(0,R) and radial direction for cell-cell and
cell-matrix adhesion interactions. The left figure describes the process of the cancer cells
adhesion, the ball B(x,R) centred at x and of radius R, the point x+y with the direction vector
n(y) in green. The right figure shows the decomposition of the region using annulus sectors
S ⌫ with barycentres bS ⌫ , highlighted with red dots, which are defined with full details in
the Appendix Section A where we describe the numerical approach for the nonlocal
forward model (4.1).

adhesion:

Ap (x, t,u (·, t)) :=
1
R

Z

B((0,0),R)

n (y) · K (kyk2) · gp (u (x + y, t) , t) �
⌦

(x + y) dy. (4.2)

By using these notations the approximation for Dp�cp � r · [cpAp (x, t,u (·, t))] in (4.1) is as follows:
It is assumed that the interactions between a cell and its neighbouring cells as well as the components
of the ECM occur inside a sensing region B ((0, 0) ,R) ⇢ R, where R > 0 is the sensing radius, as
illustrated in Figure 6. In the above equation, �

⌦
(·) represents the characteristic function of ⌦.

Further, n (y) is the unit radial vector given by

n (y) :=
(

y/kyk2 if y 2 B (0,R) \ {(0, 0)},
(0, 0) otherwise. (4.3)

Furthermore, gp (u(x + y, t) , t) represents the p�th component of the adhesion function g (u (x + y, t) , t)
that is given by

g (u, t) = [Sccc + Scvv] · (Kc � c1 � c2 � v)+ ,

with Scc =

 
S c1c1 S c1c2

S c2c2 S c2c2

!
and Scv =

 
S c1v 0

0 S c2v

!
.

(4.4)

Here {S cic j
}i=1,2 are the non-negative cell-cell adhesion strengths of the adhesion bonds established

between the primary and mutated cancer cell populations, while {S civ
}i=1,2 are the non-negative cell-

matrix adhesion stands for the strengths for the adhesive interactions between each of the two cancer
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Figure 7. Reconstruction of the general mutation law Q(c1, v) for the nonlocal model (4.1).
Row a) the true mutation law restricted toAcv. Row b) the reconstructed mutation law onAcv

in the presence of exact and noisy data: (left) exact data and ↵⇤ = 10�4; (centre) 1% noisy
data and ↵⇤ = 10�4; and (right) 3% noisy data and ↵⇤ = 10�4. For all plots in this figure: 1)
first axis shows the values c1 2 [c̄min

1 , c̄
max

1 ]; 2) second axis shows the values v 2 [v̄min, v̄max];
and 3) the colour bars represent the magnitude of mutation law or its reconstructions at each
(c1, v) 2 Acv. The numerical simulations are obtained using the parameters given in Table 1.

subpopulation and the ECM. Finally, no overcrowding of the cell population and ECM over the tumour
domain is ensured here through the term (Kc � c1 � c2 � v)+ := max(Kc � c1 � c2 � v, 0).

The nonlocal dynamics (4.1) is assumed to take place in the presence of the same initial and
boundary condition as those assumed in for the local model and given by (2.5)-(2.6) in Section
2. The numerical approximation of the forward cancer invasion model (4.1) is presented in
Appendix Section A. This includes the discretisation of the main spatial operators as well as the
o↵ grid numerical approach for the nonlocal adhesion flux termsAp (x, t,u (·, t)) whose schematic
is given by the right side of Figure 6. Finally, the general mutation law Q(c1, v) is assumed to be
unknown and its identification will be our main focus in this section.

4.1. Reconstruction of the Mutation Law in the Nonlocal Cancer Invasion Model

Building on the inverse problems approach developed for the local cancer invasion model in Sec-
tion 3.4 and applying this to the nonlocal model (4.1), we proceed now to address the reconstruction
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Figure 7. Reconstruction of the general mutation law Q(c1, v) for the nonlocal model (4.1).
Row a) the true mutation law restricted toAcv. Row b) the reconstructed mutation law onAcv

in the presence of exact and noisy data: (left) exact data and ↵⇤ = 10�4; (centre) 1% noisy
data and ↵⇤ = 10�4; and (right) 3% noisy data and ↵⇤ = 10�4. For all plots in this figure: 1)
first axis shows the values c1 2 [c̄min

1 , c̄
max

1 ]; 2) second axis shows the values v 2 [v̄min, v̄max];
and 3) the colour bars represent the magnitude of mutation law or its reconstructions at each
(c1, v) 2 Acv. The numerical simulations are obtained using the parameters given in Table 1.

subpopulation and the ECM. Finally, no overcrowding of the cell population and ECM over the tumour
domain is ensured here through the term (Kc � c1 � c2 � v)+ := max(Kc � c1 � c2 � v, 0).

The nonlocal dynamics (4.1) is assumed to take place in the presence of the same initial and
boundary condition as those assumed in for the local model and given by (2.5)-(2.6) in Section
2. The numerical approximation of the forward cancer invasion model (4.1) is presented in
Appendix Section A. This includes the discretisation of the main spatial operators as well as the
o↵ grid numerical approach for the nonlocal adhesion flux termsAp (x, t,u (·, t)) whose schematic
is given by the right side of Figure 6. Finally, the general mutation law Q(c1, v) is assumed to be
unknown and its identification will be our main focus in this section.

4.1. Reconstruction of the Mutation Law in the Nonlocal Cancer Invasion Model

Building on the inverse problems approach developed for the local cancer invasion model in Sec-
tion 3.4 and applying this to the nonlocal model (4.1), we proceed now to address the reconstruction
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Reconstructed 
mutation law 
(3% noise in 
measured data)

4

@c2

@t
= D2�c2| {z }

di↵usion

� ⌘2r · (c2rv)|        {z        }
haptotactic movement

+ µcc2

 
1 �

c1 + c2 + v

Kc

!

|                     {z                     }
logistic proliferation

+ !(t)|{z}
mutation
switch

Q(·, ·)|{z}
unknown
mutation

, (2.1b)

@v

@t
= �⇢ (c1 + c2) v|          {z          }

degradation

+ µv (Kc � v � c1 � c2)+|                     {z                     }
remodelling term

. (2.1c)

where (Kc � v� c1 � c2)+ := max{(Kc � v� c1 � c2), 0}. Finally, the unknown term Q(·, ·) represents the
mutation law of cell subpopulation c1 into cell subpopulation c2, which is assumed to be mediated by
a time-dependant mutation enhancement !(t) that is known a priori and is taken here of the form

!(t) :=

✓
1 + tanh

✓
t�t1,2

ts

◆◆

2
,

where t1,2 is the time at which mutations from c1 to c2 start occurring, and ts > 0 is a time-steepness
coe�cient for this mutation law.

The mutation law Q(·, ·) is considerd here unknown due to either unknown dependance on the pri-
mary cell population c1, or unknown dependance on the ECM v, or unknown dependance on both
primary tumour cell population and ECM. In this study we investigate three assumptions related to
this mutation term, namely: (i) mutation depends linearly on the density of primary tumour cells as
experimental studies have shown that tumour hypoxia, generated by high tumour cell density, is
linearly correlated with an increase in genomic changes toward more aggressive tumours [24]);
(ii) mutation depends linearly on the density of primary tumour cells, and nonlinearly on the ECM den-
sity [3]; (iii) mutation law is very general and depends autonomously on both the primary tumour and
ECM, as suggested by various experimental studies regarding the role of the tumour microenvi-
ronment in cancer cells mutation process [3, 24, 25]. Thus mathematically, these cases correspond
to three inverse problems that seek to identify the unknown mutation law Q(·, ·) in the following three
situations:

(i) Mutation depends linearly on the density of primary tumour cell sub-population c1 but does not
depend at all on ECM, and so this is given by the unknown term

Q(c1, v) := eQ1(c1) = �0c1, (2.2)

with �0 representing the unknown mutation rate.
(ii) Mutation depends in a known linear manner on c1 and in an unknown nonlinear way on the density

of ECM. The unknown dependence on v is denoted mathematically by the unknown function
eQ2(v), and so the entire mutation law is therefore of the form

Q(c1, v) := �0c1 eQ2(v), (2.3)

with �0 > 0 here being considered known. A usual choice for eQ2(v) is of the form [26, 27]:

eQ2(v) :=

8>>>><
>>>>:

exp

✓
�1

2�(1�v(x,t))2

◆

exp

✓
�

1
2

◆ if 1 �  < v (x, t) < 1,

0, otherwise,
(2.4)

where  > 0 is a certain level of ECM beyond which mutations can occur.
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convergence for the nonlinear Tikhonov regularisation strategy given by the functionals {J↵}↵>0,

J↵ : M1
! R, 8↵ > 0,

defined by

J↵ (m) :=

���������
K(m) �

2
666666664

c̃
⇤

1
c̃
⇤

2
ṽ
⇤

3
777777775

���������

2

2

+ ↵kmk22, 8m 2 M1.

(3.13)

The minimisation of these functionals enable us to identify m
c
⇤

1,c
⇤

2,v
⇤ as the limit ↵ ! 0 of the points of

minimum m
↵ of J↵ (these points correspond to the smallest discrepancy between the data measurements

and the solution of our system that uses m
↵ as a mutation law). The two norms involved in (3.13)

represent the usual Euclidean norms on the corresponding finite dimensional spaces. Indeed, while
the first is the standard Euclidean norm on RN⇥N

⇥ RN⇥N
⇥ RN⇥N , the second is also the Euclidean

norm induced on the M�dimensional space of functions M1 via the standard isomorphism that we
establish betweenM1 and RM by which each m 2 M1 is uniquely represented through its nodal values
{m(⌘l)}l=1...M with respect to the linear basis functions {�̄l}l=1...M associated to GM [31]:

since m =
X

l=1...M

m(⌘l)�̄l, we therefore make the identification: m ⌘ {m(⌘l)}l=1...M. (3.14)

Finally, in (3.13), c̃
⇤

1, c̃
⇤

2 and ṽ
⇤ represent the discretised measurements of the densities of cancer cells

and ECM given in equations (3.1a)-(3.1c), i.e., c̃
⇤

1 := {c⇤1(xi, y j)}i, j=1,...,N , c̃
⇤

2 := {c⇤2(xi, y j)}i, j=1,...,N and
ṽ
⇤ := {v⇤(xi, y j)}i, j=1,...,N . We assume that these data measurements are either exact or are corrupted by

a certain noise level � � 0. Thus, maintaining for simplicity the measurements notation unchanged,
these measurements are given by

c̃
⇤

1(x) = c̃
⇤

1exact
(x) + ��c1(x), (3.15a)

c̃
⇤

2(x) = c̃
⇤

2exact
(x) + ��c2(x), (3.15b)

ṽ
⇤(x) = ṽ

⇤

exact
(x) + ��v(x), (3.15c)

where, 8 x 2 ⌦, we have that c̃
⇤

1exact
(x), c̃

⇤

2exact
(x) and ṽ

⇤

exact
(x) describe the exact data, and �c1(x), �c2(x)

and �v(x) are signal-independent noise generated from a Gaussian normal distribution with mean zero
and standard deviations �c1 , �c2 and �v, respectively, given by

8>>>>>>>>><
>>>>>>>>>:

�c1 := 1
�(⌦)

R

⌦

c̃
⇤

1exact
(x) dx,

�c2 := 1
�(⌦)

R

⌦

c̃
⇤

2exact
(x) dx,

�v := 1
�(⌦)

R

⌦

ṽ
⇤

exact
(x) dx,

(3.16)

with � (·) being the usual Lebesgue measure. In the numercial results below, we generate the ran-
dom variables �c1(x), �c2(x) and �v(x) via MATLAB function normrnd by taking {�c1(xi, y j)}i, j=1...N :=
normrnd

�
0,�c1 ,N ⇥ N

�
, {�c2(xi, y j)}i, j=1...N := normrnd

�
0,�c2 ,N ⇥ N

�
and {�v(xi, y j)}i, j=1...N :=

normrnd (0,�v,N ⇥ N).
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Abstract: Cancer cell mutations occur when cells undergo multiple cell divisions, and these muta-
tions can be spontaneous or environmentally-induced. The mechanisms that promote and sustain these
mutations are still not fully understood. This study deals with the identification (or reconstruction) of
the usually unknown cancer cell mutation law, which lead to the transformation of a primary tumour
cell population into a secondary, more aggressive cell population. We focus on local and nonlocal
mathematical models for cell dynamics and movement, and identify these mutation laws from macro-
scopic tumour snapshot data collected at some later stage in the tumour evolution. In a local cancer
invasion model, we first reconstruct the mutation law when we assume that the mutations depend only
on the surrounding cancer cells (i.e., the ECM plays no role in mutations). Second, we assume that the
mutations depend on the ECM only, and we reconstruct the mutation law in this case. Third, we re-
construct the mutation when we assume that there is no prior knowledge about the mutations. Finally,
for the nonlocal cancer invasion model, we reconstruct the mutation law that depends on the cancer
cells and on the ECM. For these numerical reconstructions, our approximations are based on the finite
di↵erence method combined with the finite elements method. As the inverse problem is ill-posed, we
use the Tikhonov regularisation technique in order to regularise the solution. Stability of the solution
is examined by adding additive noise into the measurements.

Keywords: Inverse Problems; Mutation Identification; Tikhonov Regularisation; Tumour
Growth

1. Introduction

The beginning of a primary solid tumour is the result of a single normal cell that is transformed
as a result of mutations in certain key genes. Cells can mutate spontaneously, or mutations can be
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Work in progress: keloids = abnormal wounds or benign tumours?

Abnormal wound healing
� Hypertrophic scars (raised scars)

� Keloid scars (raised scars that invade the 
surrounding tissue, beyond the primary 
injured area)
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DESCRIPTION
Figures 1–3 show a lesion on the anterior chest of
a 49-year-old woman which was originally misdiag-
nosed as a keloid scar.
Keloids are benign, raised, irregular clusters of

scar tissue which grow beyond the margins of an
original wound due to abnormal proliferation of
fibroblasts. They are generally discrepant in colour
to that of the surrounding skin and cause pain,
itching and significant disfigurement. When keloids
become infected they may ulcerate. The chest is a
common location and keloid’s are often refractory
to treatment.1 All these features are present in the
case photographed. However, as the natural history
of the lesion progressed, some of its atypical fea-
tures became increasingly apparent.
Although keloids can occur in any skin type,

they occur more commonly in darker pigmented
skin, unlike our patient’s. Other atypical features
include the lesion’s sheer size and degree of projec-
tion from the anterior chest wall, and the area of
necrosis which appeared at its inferior pole. These
features appeared later on in the disease progres-
sion, as the lesion began to enlarge more rapidly,
outgrowing the blood supply; tell-tale signs that
this is a malignant lesion.
The lesion is in fact a rare high-grade soft-tissue

sarcoma, fibrosarcomatous dermatofibrosarcoma
protuberans (FS-DFSP). DFSP is a soft-tissue
sarcoma, a malignant mesenchymal tumour, which
typically arises from the dermis of the torso and
proximal limbs. The incidence is 3–5 per million
per year. Risk factors remain unclear; however,
DFSP is strongly associated with a rearrangement
of chromosomes 17 and 22. Treatment is usually by
wide local excision, which gives a high cure rate.
FS change occurs in 5–15% of DFSP cases.
FS-DFSP has a significantly more aggressive clinical
course with a higher risk of distant metastasis and
an inferior prognosis.2

Case history
The patient was a well-kempt Caucasian female
with no comorbidities or history of previous
trauma or scar in the same region. The lesion
initially appeared as a ‘tiny red pimple’ in the
centre of her chest, which had been present for
some time before it began to slowly enlarge over a
2-year period.
In 2010, following assessment by a dermatologist

and reassurance that the lesion looked benign, she
was referred to a plastic surgery unit. The lesion,
now 10 mm diameter, was diagnosed as a keloid
scar by a senior clinician. Treatment was started
with intralesional steroid injections and silicone gel.
However, the lesion continued to grow.

In 2012, she requested a second opinion and was
referred to another plastic surgery unit for assess-
ment. By this stage the lesion had reached
65×65×43 mm—approximately the size of a tennis
ball (figures 1–3). Excision biopsy was performed
and revealed FS-DFSP infiltrating the dermis and
subcutis. Staging CT found no distant metastases.

Figure 1 Lesion on anterior chest wall, viewed from
front.

Figure 2 Lesion on anterior chest wall, viewed from
below.

Figure 3 Lesion on anterior chest wall, viewed from
the right hand side.
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abnormal scar types involve excessive collagen deposition leading 
to the formation of raised scar tissue, but in keloids, scar formation 
extends beyond the boundaries of the original wound and shows no 
regression.[1-3]

Hypertrophic scars and keloids have long been a topic of heated 
debate among researchers, with experts divided on whether or not 
these abnormal scars are two sides of the same coin, or actually 
distinct entities. Essential clinical differences have been observed 
between hypertrophic and keloid scars with respect to i. growth 
pattern, ii. natural progression over time and iii. association with 
scar contracture (Figure 2). Invasive horizontal growth remains the 
most defining characteristic on which the clinical diagnosis of a ke-
loid is based, in contrast to the non-invasive growth of hypertro-
phic scars contained within or just around the original wound edges. 
Hypertrophic and keloid scars also differ with respect to their nat-
ural progression over time. Hypertrophic scars usually arise within 
4-8 weeks after wound closure, develop over the next 6-8 months, 
after which progression usually halts and they become quiescent. 
Similar to normotrophic scars, hypertrophic scars also go through 
the cycle of matrix proliferation, stabilization and maturation; even 
if not all hypertrophic scars will mature to the same extent as their 

normotrophic scar counterparts. In contrast, keloids may develop 
anywhere from 3 months to several years after injury, rarely mature 
and do not follow the same pattern of evolution, stabilization and 
involution as the normal and hypertrophic scars. Thirdly, only hy-
pertrophic scars are associated with scar contractures, which cause 
reduced joint mobility by way of tissue shortening.[1,2,4-7]

Other important differentiating features relate to overall in-
cidence, race association and nature of the antecedent trauma. 
Hypertrophic scars occur more commonly than keloids, but only 
keloid incidence is associated with increased racially determined 
skin pigmentation.[1,2,4–7] Keloids often develop at certain anatom-
ical predilection sites, most of which are associated with the upper 
torso (see Figure 2). These predilection areas have also been linked 
to increased skin tension and constant stretching during normal 
movement.[8–12] Although hypertrophic scars are indeed known to 
occur when scars cross joints or skin creases at a right angle,[1] the 
absence of an overall anatomical association has been put forward 
by both Burd & Huang[2] as well as Seifert et al.[13] The occurrence 
of hypertrophic scars at joints may very well reflect their known as-
sociation with scar contracture,[2] which is not observed in keloids. 
Aside from these mechanical factors, young age, the nature of the 
inciting injury (thermal burns especially) and infection are all consid-
ered contributing factors to hypertrophic scar development.[1,2,4-6] 
Notably, the risk of hypertrophic scar formation is associated with 
the depth of the inciting injury.[14,15] Lastly, hypertrophic scars are 
usually not therapy-resistant and will not recur as frequently after 
surgery as keloids.[2,16,17]

To offer our perspective on the question if keloids are merely 
hypertrophic scar exacerbations or actually distinct entities, we 
focused our attention on the scientific publications (accessible via 
PubMed) in which both hypertrophic scars and keloids were both 
included for analysis. This was the key requirement for inclusion in 
this review, Tables 1 and 2 summarize the main findings of the in-
cluded studies.

2  | “KELOIDS ARE HYPERTROPHIC SC AR 
E X ACERBATIONS”

We will start with a discussion of the literature in favour of consider-
ing keloids as an exacerbation of hypertrophic scars (see Table 1). 
Although there appear to be more reported differences between 
hypertrophic and keloid scars (Table 2) than similarities (see Table 1), 
the latter table does suggest that that hypertrophic and keloid scars 
share several pathogenetic mechanisms. For example, both abnor-
mal scar types show stratum corneum barrier dysfunction,[18,19] as 
well as upregulation of epidermal differentiation and proliferation 
markers.[20] In the dermis, overexpression of connective tissue 
components,[21-29] parallel orientation of collagen bundles[30] and 
microvessel occlusion[31,32] represent a few of the shared abnormal 
scar abnormalities. With respect to the dermal cell population, both 
hypertrophic and keloid scar-derived fibroblasts showed increased 
migration,[33] contraction,[34,35] and expression of wound healing 

F I G U R E  1   Scar spectrum. Watercolour illustration of a 
normotrophic, a (linear) hypertrophic and a (major) keloid scar
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1  | INTRODUC TION

Wound healing comprises a series of carefully orchestrated pro-
cesses that ideally culminate in the development of a relatively 

inconspicuous, flat and thin-lined normotrophic scar (Figure 1). In 
the event of excessive wound healing however, abnormal scars 
may develop instead. Two types of abnormal scars are commonly 
recognized: hypertrophic scars and keloids (Figure 1). Both these 
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Abstract
Although hypertrophic scars and keloids both generate excessive scar tissue, ke-
loids are characterized by their extensive growth beyond the borders of the original 
wound, which is not observed in hypertrophic scars. Whether or not hypertrophic 
scars and keloids are two sides of the same coin or in fact distinct entities remains a 
topic of much debate. However, proper comparison between the two ideally occurs 
within the same study, but this is the exception rather than the rule. For this reason, 
the goal of this review was to summarize and evaluate all publications in which both 
hypertrophic scars and keloids were studied and compared to one another within the 
same study. The presence of horizontal growth is the mainstay of the keloid diagno-
sis and remains the strongest argument in support of keloids and hypertrophic scars 
being distinct entities, and the histopathological distinction is less straightforward. 
Keloidal collagen remains the strongest keloid parameter, but dermal nodules and 
α-SMA immunoreactivity are not limited to hypertrophic scars alone. Ultimately, the 
current hypertrophic scars-keloid differences are mostly quantitative in nature rather 
than qualitative, and many similar abnormalities exist in both lesions. Nonetheless, 
the presence of similarities does not equate the absence of fundamental differences, 
some of which may not yet have been uncovered given how much we still have to 
learn about the processes involved in normal wound healing. It therefore seems per-
tinent to continue treating hypertrophic scars and keloids as separate entities, until 
such a time as new findings more decisively convinces us otherwise.

K E Y W O R D S

diagnosis, histopathology, hypertrophic, keloid, scar
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inciting injury (thermal burns especially) and infection are all consid-
ered contributing factors to hypertrophic scar development.[1,2,4-6] 
Notably, the risk of hypertrophic scar formation is associated with 
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usually not therapy-resistant and will not recur as frequently after 
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To offer our perspective on the question if keloids are merely 
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included for analysis. This was the key requirement for inclusion in 
this review, Tables 1 and 2 summarize the main findings of the in-
cluded studies.
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We will start with a discussion of the literature in favour of consider-
ing keloids as an exacerbation of hypertrophic scars (see Table 1). 
Although there appear to be more reported differences between 
hypertrophic and keloid scars (Table 2) than similarities (see Table 1), 
the latter table does suggest that that hypertrophic and keloid scars 
share several pathogenetic mechanisms. For example, both abnor-
mal scar types show stratum corneum barrier dysfunction,[18,19] as 
well as upregulation of epidermal differentiation and proliferation 
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1  |  INTRODUC TION

Keloid scarring is a fibroproliferative disorder of the skin of unknown 

pathophysiology, characterised by fibrotic tissue that extends beyond 

the boundaries of the original wound.1 Keloids develop as a result 

of disturbance to skin architecture by any wound, and have a strong 

genetic component, appearing in ethnicities with darker skin pigmen-

tation.1 There are estimated to be over 11 million keloids in the de-

veloped world, with the global number unknown but expected to be 

higher.2 Current dogma suggests keloid development follows a sim-

ilar pathway to normal wound healing but with chronic progression, 
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Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiol-

ogy, characterised by fibrotic tissue that extends beyond the boundaries of the origi-

nal wound. Therapeutic options are few and commonly ineffective, with keloids very 

commonly recurring even after surgery and adjunct treatments. Epigenetics, defined 

as alterations to the DNA not involving the base- pair sequence, is a key regulator of 

cell functions, and aberrant epigenetic modifications have been found to contribute 

to many pathologies. Multiple studies have examined many different epigenetic modi-

fications in keloids, including DNA methylation, histone modification, microRNAs and 

long non- coding RNAs. These studies have established that epigenetic dysregulation 

exists in keloid scars, and successful future treatment of keloids may involve reverting 

these aberrant modifications back to those found in normal skin. Here we summarise 
the clinical and experimental studies available on the epigenetics of keloids, discuss 

the major open questions and future perspectives on the treatment of this disease.
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“Keloid scars are unique to humans, and thus an accurate 
animal model is not easily available, making studying the 
disease difficult. Existing models have succeeded in inducing 
hypertrophic (but not keloid) scar in wild-type and immune-
deficient mice, rabbits and red duroc pigs, but although 
similar in appearance to keloids, they don't grow beyond the 
wound boundary. ”

“Other models use implantation of human keloid scar or tissue-engineered keloid cells on immune-
deficient mice. While these models have found success in replicating a ‘keloid-like’ wound that 
grows beyond the wound boundary, there are inherent issues. Firstly, with immune-deficient mice, 
the role of the immune system in keloids cannot be explored …”
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1  | INTRODUC TION

Wound healing comprises a series of carefully orchestrated pro-
cesses that ideally culminate in the development of a relatively 

inconspicuous, flat and thin-lined normotrophic scar (Figure 1). In 
the event of excessive wound healing however, abnormal scars 
may develop instead. Two types of abnormal scars are commonly 
recognized: hypertrophic scars and keloids (Figure 1). Both these 
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Abstract
Although hypertrophic scars and keloids both generate excessive scar tissue, ke-
loids are characterized by their extensive growth beyond the borders of the original 
wound, which is not observed in hypertrophic scars. Whether or not hypertrophic 
scars and keloids are two sides of the same coin or in fact distinct entities remains a 
topic of much debate. However, proper comparison between the two ideally occurs 
within the same study, but this is the exception rather than the rule. For this reason, 
the goal of this review was to summarize and evaluate all publications in which both 
hypertrophic scars and keloids were studied and compared to one another within the 
same study. The presence of horizontal growth is the mainstay of the keloid diagno-
sis and remains the strongest argument in support of keloids and hypertrophic scars 
being distinct entities, and the histopathological distinction is less straightforward. 
Keloidal collagen remains the strongest keloid parameter, but dermal nodules and 
α-SMA immunoreactivity are not limited to hypertrophic scars alone. Ultimately, the 
current hypertrophic scars-keloid differences are mostly quantitative in nature rather 
than qualitative, and many similar abnormalities exist in both lesions. Nonetheless, 
the presence of similarities does not equate the absence of fundamental differences, 
some of which may not yet have been uncovered given how much we still have to 
learn about the processes involved in normal wound healing. It therefore seems per-
tinent to continue treating hypertrophic scars and keloids as separate entities, until 
such a time as new findings more decisively convinces us otherwise.
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Abnormal wound healing
� Hypertrophic scars (raised scars)

� Keloid scars (raised scars that invade the 
surrounding tissue, beyond the primary 
injured area)
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3 INSERM CIC-1431, CHU Besançon, Besançon 25000, France
4 INSERM, EFS BFC, UMR1098, RIGHT Interactions, Gre↵on-Hôte-Tumeur/Ingénierie Cellulaire et
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Abstract: The movement of cells during (normal and abnormal) wound healing is the result of biome-
chanical interactions that combine cell responses with growth factors as well as cell-cell and cell-matrix
interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and
non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance,
as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial
differential equation model for the interactions between fibroblasts, macrophages and the extracellular
matrix (ECM) via a growth factor (TGF-�) in the context of wound healing. For the non-local interactions,
we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM
adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density
ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We
investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised
versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results
suggest the following: (i) local models explain normal wound healing and non-local models could also
explain abnormal wound healing (although the results are parameter-dependent); (ii) the models can
explain two types of wound healing, i.e., by primary intention, when the wound margins come together
from the side, and by secondary intention when the wound heals from the bottom up.

Keywords: normal wound healing; abnormal wound healing; non-local models; local models; FEM
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Figure 1. Numerical simulations of the non-local model (1) (for the classical
Gaussian kernel with ↵c = ec = 0 showing normal wound healing). The
rows correspond to the spatial distribution of the growth factor (g), fibroblasts
(f), macrophages (m) and ECM (e) at t = 0, t = 25, t = 50 and t = 100
with initial conditions g0 = 0.1, f0 = 0.3W,m0 = 0.2W, e0 = 0.1W, where
W = 0.5 + 0.5 tanh(20x1 � 3) + 0.5 + 0.5 tanh(�20x1 � 3). The parameter
values are listed in Table 1 with pm (g) = 5g and �g = 0.2.

evidence regarding the distribution of optimal cell-cell sensing distance observed in cancerous tis-
sue [25]. Thus, the main kernel that we focus on here is of the following radial-dependent “scaled”
2D Gaussian-type kernel [6, 1]:

K(kyk2 ) =
kyk2

2⇡�2 e

�kyk
2

2

.
2�

2

. (7)

This enables distance-induced weighting for these adhesion interactions on the sensing region B(x,1

R) between cells or ECM distributed at spatial location x+y and the cells distributed at x. The2

choice of this particular kernel (which includes the Euclidean norm) also allows us to investigate3

the linear stability analysis of the model as the presence of the unit normal direction (see Eq. (5))4

does not allow for a closed-form expression for the Fourier transform of the product of the classical5

Gaussian kernel with the unit normal direction. However, in Section 3.4, for completion, we explore6

additional kernel candidates.7

The numerical results in [1] for model (1) with the classical Gaussian kernel for the case ↵e =8

ec = 0, showed normal wound healing, where in the long term each of the four variables approaches9

a spatially homogeneous steady-state, i.e. tends towards a uniform distribution. This behaviour10

is depicted here in Figure 1, which shows the ECM returning to level of the surrounding healthy11

tissue and the growth factor, fibroblast and macrophage densities being reduced to almost zero12

levels. However, choosing slightly di↵erent assumption of cell growth/decay, such as a truncated13

logistic growth, see [1]) produces spatially heterogeneous states (see Figure 9). This corresponds14

to hypertrophic scars and keloid scars, characterised by increased fibroblast densities [20] and15

increased expression of TGF-� [8].16

Motivated by these observations, we study in Section 3, the spatially homogeneous steady states17

of (1) and determine parameter values for which they are linearly unstable. Our analysis provides18

conditions under which normal wound healing is precluded and, hence, abnormal healing can be19

expected.20

3. Results.21
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adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density
ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We
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explain two types of wound healing, i.e., by primary intention, when the wound margins come together
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Ø Focus on the role of inflammation : 
macrophages & TGF𝛽

Ø Biomechanical forces: considered 
implicitly through nonlocal flux 
terms for cell-cell and cell-ECM 
adhesion  (same as for solid 
tumours)
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Fig. 4: Numerical simulations of the local model (21), obtained as a limit from the non-local
model Case I with a cone-shaped kernel. The rows correspond to the spatial distribution of growth
factor (g), fibroblast (f), macrophages, and ECM at times points t = 2, t = 20, and t = 100,
corresponding to the columns respectively. The parameter values are listed in Table ??.
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ANALYTICAL INVESTIGATION OF A NON-LOCAL1

MATHEMATICAL MODEL FOR NORMAL AND ABNORMAL2

WOUND HEALING3

Abstract. This study considers a non-local mathematical model for normal
and abnormal wound healing described by four equations: an ordinary dif-
ferential equation for the dynamics of extracellular matrix, and three partial
integro-di↵erential equations for the dynamics of growth factors, fibroblasts,
and macrophages. Here, the non-local (integral) terms characterize adhe-
sive cell-cell and cell-matrix interactions. Following up on previous numeri-
cal simulations showing the solutions of this class of models approaching either
spatially-homogeneous steady states or spatially-heterogenous states with over-
grown cell densities, we start by investigating the linear stability of the steady
states and further prove the local in-time existence and uniqueness of solu-
tions for this class of non-local models using the framework of the analytic
semigroups of operators.

1. Introduction. Wound healing is a complex phenomenon where an organism attempts to re-4

store its biological tissues to their original state following damage [11]. Wound healing generally5

involves four complex interconnected phases: hemostasis, inflammation, proliferation and remod-6

eling [14, 24]. The hemostasis phase begins immediately after an injury. In this phase, blood7

fills the wound area and platelets mobilize and cluster around the wound to form platelet plugs8

that prevent blood loss. Various inflammatory cytokines and growth factors, such as TGF-�, are9

also secreted by these platelets. In the inflammation phase (which typically occurs within 1-310

days following an injury [21]), neutrophils and macrophages invade the wound region and clean11

debris and dead cells from the wound. Macrophages then secret cytokines and growth factors such12

as TGF-� to facilitate the recruitment of fibroblasts, which begins the formation of granulated13

tissue. The proliferation phase (which typically occurs within 4-21 days following the injury [21])14

is characterised by the migration of fibroblasts to the wound site (aided by the presence of growth15

factors such as TGF-�). These cells secret collagen and fibronectin, two major components of the16

extracellular matrix (ECM), to form granulated tissue that serves as a replacement for the hemo-17

static clot. The remodelling phase (which typically occurs between 21 days and 1 year [13, 21])18

is characterised by the continual contraction of the wound area – a result of the re-organisation19

of the collagen fibers in the granulated tissue – and the formation of scar tissue. A disruption in20

any of these phases leads to abnormal wound healing and excessive scaring [17], as observed in21

hypertrophic scars and keloids [13, 23].22

The last few decades have seen the development of numerous mathematical models for normal23

wound healing; see [28, 10, 15] and references therein. In contrast, there are not many mathematical24

models for abnormal wound healing [1]. Among the few mathematical studies for hypertrophic25
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interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and
non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance,
as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial
differential equation model for the interactions between fibroblasts, macrophages and the extracellular
matrix (ECM) via a growth factor (TGF-�) in the context of wound healing. For the non-local interactions,
we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM
adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density
ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We
investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised
versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results
suggest the following: (i) local models explain normal wound healing and non-local models could also
explain abnormal wound healing (although the results are parameter-dependent); (ii) the models can
explain two types of wound healing, i.e., by primary intention, when the wound margins come together
from the side, and by secondary intention when the wound heals from the bottom up.
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ANALYTICAL INVESTIGATION OF A NON-LOCAL1

MATHEMATICAL MODEL FOR NORMAL AND ABNORMAL2

WOUND HEALING3

Abstract. This study considers a non-local mathematical model for normal
and abnormal wound healing described by four equations: an ordinary dif-
ferential equation for the dynamics of extracellular matrix, and three partial
integro-di↵erential equations for the dynamics of growth factors, fibroblasts,
and macrophages. Here, the non-local (integral) terms characterize adhe-
sive cell-cell and cell-matrix interactions. Following up on previous numeri-
cal simulations showing the solutions of this class of models approaching either
spatially-homogeneous steady states or spatially-heterogenous states with over-
grown cell densities, we start by investigating the linear stability of the steady
states and further prove the local in-time existence and uniqueness of solu-
tions for this class of non-local models using the framework of the analytic
semigroups of operators.

1. Introduction. Wound healing is a complex phenomenon where an organism attempts to re-4

store its biological tissues to their original state following damage [11]. Wound healing generally5

involves four complex interconnected phases: hemostasis, inflammation, proliferation and remod-6

eling [14, 24]. The hemostasis phase begins immediately after an injury. In this phase, blood7

fills the wound area and platelets mobilize and cluster around the wound to form platelet plugs8

that prevent blood loss. Various inflammatory cytokines and growth factors, such as TGF-�, are9

also secreted by these platelets. In the inflammation phase (which typically occurs within 1-310

days following an injury [21]), neutrophils and macrophages invade the wound region and clean11

debris and dead cells from the wound. Macrophages then secret cytokines and growth factors such12

as TGF-� to facilitate the recruitment of fibroblasts, which begins the formation of granulated13

tissue. The proliferation phase (which typically occurs within 4-21 days following the injury [21])14

is characterised by the migration of fibroblasts to the wound site (aided by the presence of growth15

factors such as TGF-�). These cells secret collagen and fibronectin, two major components of the16

extracellular matrix (ECM), to form granulated tissue that serves as a replacement for the hemo-17

static clot. The remodelling phase (which typically occurs between 21 days and 1 year [13, 21])18

is characterised by the continual contraction of the wound area – a result of the re-organisation19

of the collagen fibers in the granulated tissue – and the formation of scar tissue. A disruption in20

any of these phases leads to abnormal wound healing and excessive scaring [17], as observed in21

hypertrophic scars and keloids [13, 23].22

The last few decades have seen the development of numerous mathematical models for normal23

wound healing; see [28, 10, 15] and references therein. In contrast, there are not many mathematical24

models for abnormal wound healing [1]. Among the few mathematical studies for hypertrophic25
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• In Figure 13, we show the dynamics of the non-local model (2.1) (for case II: Sme > 0) with cone-
shaped kernel. In contrast to Figure 12, here we consider also ec > 0 describing the possibility
of cells moving down ECM gradients in the first stages of the wound healing. We see that the
concentration of the growth factor and the density of fibroblasts grow significantly at t = 100,
eventually leading to the blow-up of the numerical code. The growth in the fibroblasts population
is not matched by a similar growth in macrophages; this could be an indirect result of the non-
linear interactions and the asymmetry in the fibroblasts-ECM and macrophage-ECM interactions
(where only fibroblasts are assumed to contribute to ECM remodelling).

Since the non-local model (2.1) with cone-shaped kernel, truncated logistic cell growth and ec > 0 in
the adhesion function leads to very high fibroblasts densities (as seen in Figure 13), next we investigate
whether this fibroblasts dynamics holds also for a Gaussian kernel. In Figure 14 we see that while
the non-local model with Gaussian kernel exhibits the same overgrowth of fibroblasts (for the same
parameter values as in Figure 13), the corresponding local model does not show fibroblasts overgrowth.
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Figure 13. Numerical simulations of the non-local model (2.1) with truncated logistic term
for both cells and the ECM. We consider case II with a cone-shaped kernel. The rows cor-
respond to the spatial distribution of growth factor (g), fibroblast ( f ), macrophages (m), and
ECM (e) at time points t = 2, t = 20, and t = 100. The parameter values are listed in Table 1
with the following adjustments: µ f = µm = 10.0, pf (g) = 20g, � f = 0.0000025, and ec = 0.9.

3.4. Primary vs. secondary wound healing

As mentioned in the Introduction section 1,wound healing can occur by primary intention (when
the wound heals as the wound margins are coming together; as it is the case of surgical incisions, skin
grafts, or flap closures) or by secondary intention (when the wound is very large and it heals from the
bottom up as the granulation tissue is formed and fills in the wound) [56]. In Figure 8, we observed
wound healing by secondary intention, as the ECM was remodelled from the bottom up. In contrast,
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The adhesive cell-cell and cell-ECM interactions between the cells distributed at x and the surrounding
cells and ECM perceived over a ball-shaped sensing region B(x,R) := x + B(0,R) of radius R > 0 are
expressed via the non-local terms:

Af ,m[g, f ,m, e](x, t) =
1
R

Z

B(0,R)

K(kyk2)n(y)(1 � ⇢(u))
+

� f ,m(x + y, t) dy. (2.3)

Here, B(0,R) := {⇣ 2 R2 : k⇣k2  R} is the usual closed ball of radius R centred at 0, and n(y) denotes
the unit radial vector originating from x and moving towards x + y 2 B(0,R) for any y 2 B(0,R); it is
defined as follows:

n(y) :=

8>><
>>:

y

kyk2
, if y 2 B(0,R) \ {(0, 0)}

(0, 0), otherwise,
(2.4)

where k · k2 is the usual Euclidean norm. The kernel K(·) : [0,R] �! [0, 1] is a radially symmetric kernel
that gives the interaction range of cells (i.e., interactions between the reference cell at position x and the
neighbours at x + y). Examples of such kernels are as follows:

a. Gaussian kernel (see Figure 1(a))

K1(z) =
1

2⇡�2 e
�

z2

2�2
. (2.5)

b. Cone-shaped kernel (see Figure 1(b))

K2(z) =
3
⇡R2

✓
1 �

z
R

◆
. (2.6)

Figure 1. Kernels describing the long-distance cell-cell and cell-ECM interactions. (a)
Gaussian kernel (see Eq (2.5)) with standard deviation � = 0.04; (b) cone-shaped kernel (see
Eq (2.6)) with R = 0.1. In Eqs (2.6) and (2.5), z =

q
y2

1
+ y2

2
.
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Summary and open questions:
• Building models in steps (single-scale =>multi-scale) to address various 

questions related to complex biological interactions

• Local/Non-local spatial interactions between TAMs & tumour cells (& other 
types of cells) seem to be important

• Spatial data is being generated and can be used for model parametrization
• Dynamic spatio-temporal changes in cells distributions and their phenotype 

(=>their functionality) => spatio-temporal data available…?
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SUMMARY

Cancer is a progressive disease that can develop and evolve over decades, with inflammation playing a cen-
tral role at each of its stages, from tumor initiation tometastasis. In this context, macrophages represent well-
established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have
spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages,
inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions
in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-
associated macrophage biology, we propose a new framework to better contextualize their significance in
the inflammatory processes that precede and result from the onset of cancer and shape its evolution.

INTRODUCTION

Perturbations of tissue homeostasis, such as infection or injury,
induce a cascade of events resulting in redness, warmth,
swelling, and pain that is known as inflammation.1,2 Physiologi-
cally, inflammation is a protective response of the immune sys-
tem that facilitates the elimination of the triggering insult and ini-
tiates tissue repair. However, when the nature, intensity, and/or
duration of this response is altered, it can lead to a wide range
of pathologies, including heart disease, autoimmune disorders,
and cancer.3,4 Accordingly, cancer commonly arises at inflamed
tissue sites, and inflammation remains a primary risk factor for
tumor development, independent of sexual dimorphism, life-
style, or exposure to specific mutagens.5,6

Among the myriad of cell types involved in physiological and
pathological inflammatory responses, the most abundant cell
type is often macrophages. In the context of cancer, these are
commonly referred to as tumor-associated macrophages
(TAMs)7,8 to differentiate them from resident tissue macro-
phages (RTMs) present in normal, non-tumoral tissues.9,10

TAMs have been long known to be associated with tumor devel-
opment and generally exhibit pro-tumoral functions.11,12 How-
ever, it is becoming clear that this general ‘‘TAM’’ denomination
fails to fully reflect the dynamic heterogeneity of macrophage
populations.13,14 Indeed, single-cell and lineage-tracing technol-
ogies have exposed how TAM biology is inherently complex,
with the co-existence of distinct subpopulations with a differen-
tial ontogeny, spatial tissue localization, and cancer stage-
dependent functions that evolve over time.15–21 Moreover,

even before the onset of cancer, macrophages within inflamed
(or previously inflamed) normal tissues can modulate the sus-
ceptibility of epithelial cells to subsequent neoplastic transfor-
mation by instructing them with an epigenetic memory of inflam-
mation exposure.22

Despite their significance as bridges between inflammation
and cancer pathogenesis, the current ‘‘TAM’’ nomenclature
only formally refers to macrophages present in established tu-
mors, and currently, no distinction is being made between these
and those previously present in the tissue since before tumor
onset. As both types of macrophages can have different ontog-
enies and exposures to tissue signals, two well-established de-
terminants of macrophage heterogeneity discussed herein, an
updated framework that integrates the time axis into the biology
of TAMs is needed to better conceptualize their roles orches-
trating the inflammatory responses that often precede, result
from, and fuel cancer.
Herein, we discuss recent advances in immunology and

oncology that, combined, shape our current vision of TAM
biology. We propose a new perspective that captures temporal
aspects of macrophage evolutionary histories within normal,
pre-malignant, and malignant tissues to better describe how
their physiological functions are co-opted in cancer23–26 and
expose means to interfere with their disease-promoting roles
more selectively. We argue for a distinction between (i) intra-tu-
mor macrophages that resided in the tissue since before cancer
onset (PreTAMs), which connect inflammation with cancer initia-
tion and are further reprogrammed within the tumor microenvi-
ronment (TME) of developing tumors, and (ii) macrophages that

ll
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“Clinical observations and experimental systems support that 
their heterogeneity, plasticity, and pleiotropic functions are 
influenced by multiple parameters, including ontogeny, 
spatial context, and several temporal determinants -- from 
macrophage individual experience and lifespan to the 
organism’s age and exposome. Herein, we propose to 
integrate the dimension of time into the current framework 
to better understand the roles of macrophages inter-
connecting inflammation and cancer and their dynamism 
within developing and evolving tumoral niches.”
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Moreover, the term (1 � ⇢(u))+ := max{(1 � ⇢(u)), 0} is included to avoid overcrowding within the
non-local interactions. Finally, the function � f ,m(x + y, t) describes the type and magnitude of cell-cell
and cell-ECM adhesive interactions between cells at position x and the neighbours at position x + y.
To define these � f ,m functions, we assume that the fibroblasts are cocultured with macrophages on the
ECM. Note here that some experimental studies observed that macrophages cannot adhere to the ECM
(at least to that of type I collagen) [47], while other experimental studies showed that macrophages can
adhere to some type of substrate (e.g., cross-linked hydrogel) [48]. To investigate these contradictory
experimental results, in this study, we consider two sub-cases:

I. No macrophage-ECM adhesion.

� f (x + y, t) := S f f f (x + y, t) + S f mm(x + y, t) + S f ee(x + y, t), (2.7a)
�m(x + y, t) := Smmm(x + y, t) + Sm f f (x + y, t). (2.7b)

II. Including macrophage-ECM adhesion (S me > 0 in �m).

� f (x + y, t) := S f f f (x + y, t) + S f mm(x + y, t) + S f ee(x + y, t), (2.8a)
�m(x + y, t) := Smmm(x + y, t) + Sm f f (x + y, t) + Smee(x + y, t). (2.8b)

In the above equations, we consider the strengths of fibroblast-fibroblast interactions (S f f ), fibroblast-
macrophage interactions (S f m), fibroblast-ECM interactions (S f e), macrophage-macrophage interactions
(Smm), macrophage-fibroblast interactions (Sm f ) and macrophage-ECM interactions (Sme). Since these
interaction strengths depend on TGF-� and the presence of the ECM [49], to define them, we consider a
monotonically increasing Hill-type function that depends on “ e + g ” and satisfies S j(e, g)= 0 for e = 0
and g = 0:

S j := S
max

j

e + g
1 + e + g

, j 2 { f f , f m,mm,m f , f e,me}. (2.9)

The above function is used to describe cell movement against the gradient of the ECM and neighbouring
cells in the presence of the growth factor (and it will be used throughout this study). However, in the
early stages of wound healing, the fibroblasts and macrophages leave the healthy tissue to move onto the
newly formed fibrin mesh at the bottom of the wound, to help with the formation of granulation tissue.
To describe these dynamics, in Section 3.3, we use the following function for cell-cell and cell-ECM
adhesion:

S j := S
max

j

(e � ec) + g
1 + e + g

, j 2 { f f , f m,mm,m f , f e,me}, (2.10)

where ec is a matrix threshold for the transition between up gradient cell movement and down gradient
cell movement.
Because we do not really know the spatial range over which these adhesive cell-cell and cell-ECM
interactions have an impact (although some experimental studies have suggested that cells can sense up
to a few rows of neighbouring cells [50]), in the next section, we also consider localised versions of
model (2.1). To this end, we assume that the cell perception radius R! 0; thus, we can use classical
Taylor expansions to transform the non-local interactions into local interactions.
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established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have
spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages,
inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions
in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-
associated macrophage biology, we propose a new framework to better contextualize their significance in
the inflammatory processes that precede and result from the onset of cancer and shape its evolution.

INTRODUCTION

Perturbations of tissue homeostasis, such as infection or injury,
induce a cascade of events resulting in redness, warmth,
swelling, and pain that is known as inflammation.1,2 Physiologi-
cally, inflammation is a protective response of the immune sys-
tem that facilitates the elimination of the triggering insult and ini-
tiates tissue repair. However, when the nature, intensity, and/or
duration of this response is altered, it can lead to a wide range
of pathologies, including heart disease, autoimmune disorders,
and cancer.3,4 Accordingly, cancer commonly arises at inflamed
tissue sites, and inflammation remains a primary risk factor for
tumor development, independent of sexual dimorphism, life-
style, or exposure to specific mutagens.5,6

Among the myriad of cell types involved in physiological and
pathological inflammatory responses, the most abundant cell
type is often macrophages. In the context of cancer, these are
commonly referred to as tumor-associated macrophages
(TAMs)7,8 to differentiate them from resident tissue macro-
phages (RTMs) present in normal, non-tumoral tissues.9,10

TAMs have been long known to be associated with tumor devel-
opment and generally exhibit pro-tumoral functions.11,12 How-
ever, it is becoming clear that this general ‘‘TAM’’ denomination
fails to fully reflect the dynamic heterogeneity of macrophage
populations.13,14 Indeed, single-cell and lineage-tracing technol-
ogies have exposed how TAM biology is inherently complex,
with the co-existence of distinct subpopulations with a differen-
tial ontogeny, spatial tissue localization, and cancer stage-
dependent functions that evolve over time.15–21 Moreover,

even before the onset of cancer, macrophages within inflamed
(or previously inflamed) normal tissues can modulate the sus-
ceptibility of epithelial cells to subsequent neoplastic transfor-
mation by instructing them with an epigenetic memory of inflam-
mation exposure.22

Despite their significance as bridges between inflammation
and cancer pathogenesis, the current ‘‘TAM’’ nomenclature
only formally refers to macrophages present in established tu-
mors, and currently, no distinction is being made between these
and those previously present in the tissue since before tumor
onset. As both types of macrophages can have different ontog-
enies and exposures to tissue signals, two well-established de-
terminants of macrophage heterogeneity discussed herein, an
updated framework that integrates the time axis into the biology
of TAMs is needed to better conceptualize their roles orches-
trating the inflammatory responses that often precede, result
from, and fuel cancer.
Herein, we discuss recent advances in immunology and

oncology that, combined, shape our current vision of TAM
biology. We propose a new perspective that captures temporal
aspects of macrophage evolutionary histories within normal,
pre-malignant, and malignant tissues to better describe how
their physiological functions are co-opted in cancer23–26 and
expose means to interfere with their disease-promoting roles
more selectively. We argue for a distinction between (i) intra-tu-
mor macrophages that resided in the tissue since before cancer
onset (PreTAMs), which connect inflammation with cancer initia-
tion and are further reprogrammed within the tumor microenvi-
ronment (TME) of developing tumors, and (ii) macrophages that
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Although tissues are usually studied in isolation, this situation rarely occurs
in biology, as cells, tissues and organs coexist and interact across scales to
determine both shape and function. Here, we take a quantitative approach
combining data from recent experiments, mathematical modelling and
Bayesian parameter inference, to describe the self-assembly of multiple epi-
thelial sheets by growth and collision. We use two simple and well-studied
continuum models, where cells move either randomly or following popu-
lation pressure gradients. After suitable calibration, both models prove to
be practically identifiable, and can reproduce the main features of single
tissue expansions. However, our findings reveal that whenever tissue–
tissue interactions become relevant, the random motion assumption can
lead to unrealistic behaviour. Under this setting, a model accounting for
population pressure from different cell populations is more appropriate
and shows a better agreement with experimental measurements. Finally,
we discuss how tissue shape and pressure affect multi-tissue collisions.
Our work thus provides a systematic approach to quantify and predict
complex tissue configurations with applications in the design of tissue
composites and more generally in tissue engineering.

1. Introduction
Cells do not live in isolation; instead, they coexist and organize to form tissues
and organs. In particular, during tissue growth, cells do not behave as isolated
individuals, but sense their environment and direct their motion according to
the information they receive. The sum of all individual cells, behaving in a co-
ordinated manner and interacting with each other, can give rise to collective cell
migration, which is essential for many different phenomena in biology, from
wound healing and tumour invasion, to the formation of complex structures
during development [1,2]. Being such a fundamental process, much effort
has been devoted to decipher the basic physical principles behind collective
cell migration, both experimentally and from a modelling perspective [3,4].
Being able to connect models and experimental data is thus essential in order
to confirm the validity of mathematical models, as well as to gain further
mechanistic insights.

At the tissue scale, mathematical models are usually based on a continuum
description, where the cell density evolves according to a partial differential
equation (PDE). Arguably the most famous continuum model of tissue
spreading is the reaction–diffusion Fisher-KPP equation [5], which is based
on the assumption that cell movement is essentially random, and that cells
proliferate according to a logistic growth law. This model and variants of it
have been used to describe a variety of tissue formation experiments [6–8].

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

Summary and open questions:

• New mathematical/computational approaches need to be developed for 
estimating parameters & functions/functionals in multi-scale local/nonlocal 
models …
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Abstract

We address the inverse problem of identifying nonlocal interaction potentials in nonlinear aggre-
gation-diffusion equations from noisy discrete trajectory data. Our approach involves formulating
and solving a regularized variational problem, which requires minimizing a quadratic error func-
tional across a set of hypothesis functions, further augmented by a sparsity-enhancing regularizer.
We employ a partial inversion algorithm, akin to the CoSaMP [57] and subspace pursuit algorithms
[31], to solve the Basis Pursuit problem. A key theoretical contribution is our novel stability esti-
mate for the PDEs, validating the error functional ability in controlling the 2-Wasserstein distance
between solutions generated using the true and estimated interaction potentials. Our work also in-
cludes an error analysis of estimators caused by discretization and observational errors in practical
implementations. We demonstrate the effectiveness of the methods through various 1D and 2D
examples showcasing collective behaviors.

Keywords: Inverse problem, aggregation-diffusion equation, basis pursuit, stability estimates, numeri-

cal simulations.
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1 Introduction

In this work, we investigate the estimation of interaction potentials for a broad spectrum of nonlocal

equations with gradient flow structure [20, 22]. These equations can be written as

{
∂tµ = ∇ · [µ∇(H ′(µ) + V (x) +W ∗ µ)] , x ∈ Rd , t > 0 ,

µ(x, 0) = µ0(x) ,
(1.1)

where µ(t,x) ≥ 0 denotes a probability measure; H(µ) denotes the density of internal energy; V (x) is

a confinement potential, and W (x) is an interaction potential governing the nonlocal interaction rules.

Equation (1.1) arises in many applications, from porous medium flows [71, 29, 59] to the study of

cell populations [12, 38, 27, 28] passing by swarming models for animal movement [68, 44]. Notably, in

cases where diffusion is absent (H ≡ 0), equation (1.1) models aggregation behaviors of large number

of particles [72, 5, 1]. With linear diffusion, where H = κµ(log µ − 1) with κ the diffusion constant,

it transforms into a Fokker-Planck equation with applications in opinion formation [69, 34, 35], finance

[64, 58], wealth distribution [32], synchronization [21, 23] and many other applications in kinetic theory.
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Abstract
In this study, we apply the Bayesian paradigm for parameter identification to a
well-studied semi-linear reaction–diffusion system with activator-depleted reaction
kinetics, posed on stationary as well as evolving domains. We provide a mathemat-
ically rigorous framework to study the inverse problem of finding the parameters of
a reaction–diffusion system given a final spatial pattern. On the stationary domain
the parameters are finite-dimensional, but on the evolving domain we consider the
problem of identifying the evolution of the domain, i.e. a time-dependent function.
Whilst others have considered these inverse problems using optimisation techniques,
the Bayesian approach provides a rigorous mathematical framework for incorpo-
rating the prior knowledge on uncertainty in the observation and in the parameters
themselves, resulting in an approximation of the full probability distribution for the
parameters, given the data. Furthermore, using previously established results, we can
prove well-posedness results for the inverse problem, using the well-posedness of
the forward problem. Although the numerical approximation of the full probability is
computationally expensive, parallelised algorithms make the problem solvable using
high-performance computing.
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Variational approach to estimate “W ” from synthetic 
data 

With nonlinear diffusion, H(µ) = κµm

m−1 for m > 1, it relates to Keller-Segel type models in chemotaxis

[43, 11] with volume exclusion [15, 10, 25, 24].

A central problem in the qualitative analysis of (1.1), which has garnered significant attention, is

determining the criteria for the interaction potential W that result in solutions exhibiting spontaneous

pattern formation or self-organization [72, 1, 28]. Recent researches suggest that even simple forms of

interaction potentials, such as radial potentials denoted by W (x) := Φ(|x|), are capable of inducing

complex collective behaviors [47, 8, 5, 26]. Examples of such potentials include polynomial forms such

as W = |x|3
3 and the Morse potential W = −CAe−|x|/"A + CRe−|x|/"R , which are crucial in modeling

attractive and repulsive interactions among large groups of particles. In these numerical and theoret-

ical studies, where the goal is often to reproduce the observed dynamics qualitatively, the interaction

potential is often predetermined in an empirical way.

Advancements in data acquisition technologies, such as digital imaging [6] and GPS tracking [56,

52, 70], have made it possible to collect density evolution data for large ensembles of particles. This

leads to an intriguing question: is it possible to deduce the interaction rules from such data? Effective

algorithms aligning equation (1.1) with this observational data are essential. This paper delves into

addressing this problem, with the goal of bridging the gap between theoretical models and empirical

data. We propose a variational approach to estimate interaction potential from observed solution data,

that accounts for both discretization errors and observation errors, as described by

{ρ(t",xm) + ε"m}M,L
m=−M,"=1 , (1.2)

where ρ is the smooth density of µ in the sense explained in Section 2; (t",xm) represents a uniform

mesh in the domain, and {ε"m} is the discrete added noise. Specifically, the solution is sought through

solving a quadratic minimization problem:

Ŵ ∈ argmin
Ψ∈H

Ẽ∞(Ψ) ,

with

Ẽ∞(Ψ) =
1

T

∫ T

0

∫

Rd

‖∇Ψ ∗ ρ−∇W ∗ ρ‖2ρ(t,x)dxdt .

Here, W ∈ H where H = span{Ψi}ni=1 represents a hypothesis function space and Ŵ is the estimated

potential by our method. Due to the ill-posedness of the inverse problem [46, 49, 48, 67], the solutions

may not be unique or can not be stably recovered given the perturbed data. We propose to regularize

the inverse problem by promoting sparsity, motivated by the insight that many interaction potentials are

simple functions sparse with respect to certain basis functions.

From an algorithmic perspective, our variational functional is composed of two key elements: a

quadratic data fidelity term, that performs interaction force matching, and a sparsity-promoting regular-

izer. This formulation aligns with addressing a Basis Pursuit (BP) problem [73], commonly encountered

in the realm of compressive sensing. While numerous state-of-the-art algorithms exist for solving BP

problems, finding an algorithm that is specifically tailored and effective for a given setting remains a

significant challenge.

One of our main contributions in this work is that we propose the PartInv (Partial Inversion) algo-

rithm to solve the BP problem arising in our context. This algorithm excels at handling highly coherent

columns in the regression matrix, a phenomenon frequently observed empirically across numerous phys-

ical examples, and in particular in the ones considered in Section 5. Its effectiveness is further enhanced

by incorporating support pruning (see Section 4.4), which integrates residual data loss with time evolu-

tion error analysis. We have intensively tested our algorithm on both one and two dimensional examples,

and the results demonstrate its remarkable effectiveness and superiority over alternative methodologies.

Our work builds upon and extends the findings of [45], which primarily focused on aggregation equa-

tions with linear diffusion and noise-free solution data in one dimension. We have also made contri-

butions by integrating a distinct regularization technique and by extending our study to more complex

scenarios, including those involving nonlinear diffusion terms and noisy data.
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